
Operational Sensing Life Technologies for
Marine Ecosystems

`

Deliverable D4.3 – AMOVALIH code and
documentation

Lead Beneficiary: CSIC

Author/s: Andreu Fornos, Ivan Rodero, Xavier Salvador, Berta
Companys.

29/12/2023

Views and opinions expressed are those of the author(s) only and do not
necessarily reflect those of the European Union or the European Commission.

Neither the EU nor the EC can be held responsible for them.



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Prepared under contract from the European Commission

Grant agreement No. 101094924

EU Horizon Europe Research and Innovation action

Project acronym: ANERIS
Project full title: operAtional seNsing lifE technologies for maRIne ecosystemS
Start of the project: January 2023
Duration: 48 months
Project coordinator: Jaume Piera

Deliverable title: AMOVALIH code and documentation
Deliverable n°: D4.3.
Nature of the deliverable: Other
Dissemination level: Public

WP responsible: WP4
Lead beneficiary: CSIC

Citation: Fornos, A., Rodero, I., Salvador, X., Companys, B. (2023).
AMOVALIH code and documentation. Deliverable D4.3 y EU
Horizon Europe
ANERIS Project, Grant agreement No. 101094924

Due date of deliverable: Month n°12
Actual submission date: Month n°12

Deliverable status:

Version Status Date Author(s)
0.1 Initial draft 2/12/2023 QUANTA
0.2 Complete draft 28/12/2023 QUANTA + CSIC
0.3 Internal review 29/12/2023 CSIC
1.0 Final 29/12/2023 QUANTA + CSIC

The content of this deliverable does not necessarily reflect the official opinions of the European
Commission or other institutions of the European Union

2



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Table of Contents

Preface 4
Summary 4
List of Abbreviations 4
1. Introduction 6

1.1 Motivation and objectives 6
1.2 Impact on sustainability, ethical-social and diversity 8
1.3 Approach and methods 8

2. State of the art 10
2.1 Bioimage preprocessing 11
2.2 Combined Machine Learning and Deep Learning methodologies 12

2.2.1 Machine Learning Applied to Bioimages 12
2.2.2 Deep Learning (DL) 15

2.3 Hierarchy AI 16
2.4 Hybrid AI 16
2.5 Ethical AI 17

3. AMOVALIH development 19
3.1 Image acquisition 19
3.2 Data preprocessing 20

3.2.1 Image resizing 21
3.2.2 Dataset splitting 22
3.2.3 Data augmentation 23

3.4 Dataset derived problems 24
3.2.4 Feature extraction and selection 25
3.2.5 Quality of the images 25

3.3 Model development 26
3.3.1 Utils 26
3.3.2 Feature extraction 28
3.3.3 Kingdom taxon 31
3.3.4 Phylum taxon 40
3.3.5 Hierarchy AI models 42

3.4 Models API 45
3.4.1 API Endpoints 46
3.4.2 Model integration 51
3.4.3 Testing the integrated proof-of-concept models 53

3.5 Hybrid AI 55
3.5.1 Leverage users’ feedback, reputation, and model stats 55
3.5.2 Model retraining and adaptive learning 56

References 59

3



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Preface
This document is a deliverable for the ANERIS project, funded under the European Union’s
Horizon Europe Research and Innovation Action under grant agreement No. 101094924.

The Advanced Marine Observations VALidation-Identification system based on Hybrid
intelligence (AMOVALIH) will be developed in a similar way to the previous technologies. The
code will be integrated into the Citizen Observatory MINKA to facilitate advanced services for
identifying and validating reported observations. The code will be shared in open (Git-based)
repositories for future improvements and in the EOSC Marketplace as well. The final code
version, with its linked documentation will be made public upon its release.

Summary
One of the major bottlenecks in artificial intelligence (AI) is that labeling training data, and
validating model outputs still require substantial human supervision and work, which is why
many AI applications rely on the same training data sets and do not often closely enough
inspect the outcomes. Hybrid Intelligence, which combines human and Artificial Intelligence to
achieve superior results collectively, could overcome the challenge of obtaining training sets and
learning much more effectively. Contributions to the project: AMOVALIH will be a hybrid
intelligent system to classify images of marine life, combining reputation-based classification
systems based on the contributions from humans, combined with advanced automatic
identification systems that will participate as virtual agents and learn progressively with new
validated observations from new species. This will for operational marine life monitoring be the
first time that one approach of hybrid intelligence is developed for marine life monitoring.
Validation Case Studies: CS3, CS4.

This document describes the initial implementation of AMOVALIH, including a novel hierarchical
AI model, a robust API that can integrate multiple AI models and human interaction towards the
targeted hybrid intelligence approach.

List of Abbreviations
AI - Artificial intelligence

AI HLEG - High-level expert group on artificial intelligence

ANN - Artificial Neural Network

APF - “Animalia”, “Plantae”, and “Fungi” categories

4

https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai


D4.3 AMOVALIH code and documentation
ANERIS #101094924

API - Application Programming Interface

AUC - area under the curve

BoF - Bag of Features

CNN - Convolutional Neural Networks

DL - Deep Learning

EGI - European Grid Initiative

FPR - false positive rate

GBIF - Global Biodiversity Information Facility

GLCM - Gray-Level Co-occurrence Matrix

KNN - K-Nearest Neighbors

ML - Machine learning

MDP - Markov Decision Process

NoSQL - non-relational types of databases

PCA - Principal Component Analysis

PC - “Protozoa” and “Chromista” categories

ReLU - Rectified Linear Unit

RL - Reinforcement Learning

RFE - Recursive Feature Elimination

ROC - Receiver Operating Characteristic

SDG - Sustainable Development Goals

SVM - Support Vector Machine

TPR - true positive rate

5



D4.3 AMOVALIH code and documentation
ANERIS #101094924

1. Introduction
The ongoing loss of biodiversity presents a pressing global issue, threatening our planet’s
ecosystem and its life-sustaining capabilities (Tilman, 2000). This predicament has drawn
significant concern from both the scientific community and the broader public, making the
analysis of biodiversity and environmental indicators a topic of paramount importance (Sala et
al., 2000). Citizen observatories, such as MINKA, play a crucial role in promoting citizen
engagement in marine ecosystem sustainability while generating an extensive dataset of flora
and fauna images that require expert classification.

Traditionally, the assessment and study of biodiversity and environmental health have been
reliant on labor-intensive, costly, and often inefficient manual monitoring methods (Bartkowski,
Lienhoop, and Hensjürgens, 2015). AMOVALIH aims to address this by leveraging advances in
AI, with a focus on blended AI techniques. We aim to analyze large datasets of bioimages,
utilizing expert knowledge in the field and data science techniques.

While numerous approaches exist for generating bioimage classification models, we
acknowledge that it is unrealistic to expect that our generated AI models can outperform all
others in classifying all species (Nanni et al., 2019). Therefore, our proposed solution is to
create an API allowing users to select from a range of AI models to accurately classify their
bioimages. This API will serve as an “API of APIs”, where developers and service providers with
endpoints containing AI models for classifying images can register their endpoints to our API,
thereby making their model accessible to our community (López García, 2019), and
continuously improving their models by leveraging the proposed hybrid approach.

Our contribution lies in its ability to enhance the precision and scale of monitoring and
understanding ecosystem health, beyond the reach of traditional methods (Rapport, Costanza,
and McMichael, 1998). In addition, our approach has the potential to advance the field of
blended AI and its applications in environmental research as we aim to create a hierarchy of AI
models capable of achieving high accuracy and reliability in classifying bioimages uploaded by
citizens without a scientific background. This will potentially lay new foundations, or extend
current ones, in addressing broad bioimages classification problems using AI, a field where
most work to date has focused on general or specific AI models, but not a hierarchy capable of
accurately classifying the flora and fauna of an image through different taxonomic ranks (Solari
et al., 2021).

1.1Motivation and objectives

AMOVALIH's development is fueled by applying Machine Learning (ML) and Deep Learning
(DL) methodologies to address real-world problems. Our recent involvement with biodiversity
and environmental indicators has underscored the vital role that AI models can play in tackling
complex environmental challenges (Ye et al., 2020).

6



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Acknowledging the hurdles associated with data quality, data volume, and the need for
interpretability and transparency in AI models, the AMOVALIH approach presents an intriguing
challenge. By navigating these challenges, we expect to deepen our understanding of the
practical applications of AI, thereby contributing to sustainable development goals (SDGs 2023)
related to biodiversity and environmental sustainability.

We are motivated by the belief that our work can contribute significantly to the fields of AI,
environmental science, and biodiversity research, while inspiring and empowering citizens to
play an active role in protecting our planet’s biodiversity.

The primary objectives of this document can be divided into two interconnected facets. First, we
aim to generate a variety of AI models and a hierarchy of these models for bioimage
classification, leveraging a combination of ML and DL methodologies and algorithms. Second,
we provide the design of an API that serves as a conduit for integrating and employing various
AI models for bioimage classification. This system will facilitate the emergence of hybrid AI, with
the end goal being the integration of this API into a participatory citizen platform. Recognizing
the exploratory nature of our approach, we have outlined several secondary objectives that may
require adjustments due to the research uncertainties inherent in such pioneering work. These
objectives include:

● Identify and employ the most effective preprocessing techniques for bioimages to
maximize model performance and accuracy.

● Understand the iterative process between various ML and DL models and ascertain how
different methodologies can enhance these models.

● Generate and validate AI models that accurately classify species, delivering valuable
insights to citizens and raising their engagement in ecosystem sustainability.

● Prioritize transparency and interpretability in the AI models, ensuring equitable access to
information and building trust.

● Develop a hierarchy of models, capable of providing accurate and reliable classification
of bioimage data down several taxonomic ranks.

● Design and implement an API that includes both local and external AI models,
establishing a diverse and robust classification system.

● Contribute towards achieving the SDGs related to biodiversity and environmental
sustainability, particularly Goal 14: Life Below Water 2023 and Goal 15: Life on Land
2023.

● Encourage social responsibility and active citizenship by promoting citizen participation
in the data collection process.

Our objectives align with the broader goal of facilitating the development and implementation of
hybrid AI, a system that seamlessly blends human intelligence with AI capabilities for decision
making. This approach not only leverages the strengths of AI for processing large datasets and
making predictions but also taps into human expertise for tasks that require complex judgments
and creativity. Through this project, we seek to pave the way for implementing high-quality
hybrid AI systems in biodiversity research and beyond.

7



D4.3 AMOVALIH code and documentation
ANERIS #101094924

1.2 Impact on sustainability, ethical-social and diversity

The creation of AI models that accurately classify species and offer valuable insights to citizens
can stimulate their engagement in ecosystem sustainability. This work directly contributes to the
achievement of the SDGs related to biodiversity and environmental sustainability, specifically
Goal 15, which emphasizes the protection, restoration, and promotion of sustainable terrestrial
ecosystems, and Goal 14, which focuses on the sustainable use of oceans and marine
resources.

A key feature of our approach is the creation of an “API of APIs”, which allows developers to
integrate their AI models. This open-source API, designed with transparency, interpretability,
and reusability at its core, has a positive ethical and social impact. It aims to foster the
democratization of AI by making it easier for developers to contribute their AI models, thereby
enhancing access to cutting-edge AI models and contributing to ecosystem diversity (Lins,
Pandl, Teigeler, et al., 2021).

Promoting inclusivity and diversity is another core aim of this project. We aim to encourage
citizen involvement, regardless of background or scientific expertise, in environmental
monitoring initiatives and image data collection. This fosters social responsibility and active
citizenship by raising awareness about the importance of preserving the ecosystem and its
resources. Moreover, it ensures a diverse range of perspectives and experiences are
represented in the data collection process.

1.3Approach and methods

Implementing a blended AI approach that incorporates ML and DL methodologies involves a
diversity of potential approaches and methods. There is a compelling need for extensive
exploration of the current state of the art, as well as rigorous experimentation with various
combinations of techniques and methodologies.

Our strategy combines human interaction and knowledge extraction with AI processing to attain
the desired outcomes. This method enables continuous learning from experts, resulting in AI
models with higher potential and accuracy compared to those developed without human
interaction (Wu et al., 2021). While this approach may present additional challenges compared
to purely AI-based models, the trade-off in enhanced accuracy is highly rewarding (Chou,
Cheng, and Y.-W. Wu, 2013).

For human interaction, we plan to leverage the MINKA platform, sourcing feedback on
bioimages posted by users and incorporating expert information to corroborate or correct user
insights. MINKA users will organize and promote community engagement events, ensuring a
steady stream of bioimages and insights essential for improving AI models.

Regarding AI model generation, we have two primary options: constructing a single,
comprehensive AI model capable of processing various bioimages and classifying species

8



D4.3 AMOVALIH code and documentation
ANERIS #101094924

within them, or building a hierarchy of AI models, with each model playing a specific role in
processing and classifying images down to a final layer of specialized models for closely related
species (Saha et al., 2021).

Our strategy for constructing the hierarchy of AI models involves using the most recent
advancements in the combination of ML and DL methodologies to develop a set of hierarchies
that effectively classify bioimages data down several taxonomic ranks (Seventekidis and
Giagopoulos, 2021). This is an iterative process, where model configurations are continually
tested to meet the project objectives. Our methodological framework encompasses:

● Acquisition of large, accurately labeled bioimage collections.
● Application of preprocessing techniques to bioimages.
● Exploration of the iterative interaction between ML and DL models, incorporating various

methodologies
● Development of hierarchical models for accurate bioimage data classification.
● Design of a framework for integrating AI models into participatory platforms.
● Ensuring interpretability, transparency, ethics, and contributions of AI models to the

SDGs related to biodiversity and environmental sustainability.

For preprocessing and model construction, we utilize open-source software and libraries like
TensorFlow, Keras, Pandas, and Matplotlib. Additionally, Docker containers are employed for
generating virtual environments, interoperability, and reusability.

A significant emphasis of our project is the construction of an “API of APIs” to facilitate easy
integration of external AI models. This API provides a consistent and standardized interface for
external AI models to interact with MINKA observatory, thereby enhancing interoperability,
promoting collaboration and enabling Hybrid AI.

The products derived from this effort encompass an array of sophisticated systems and
methodologies. Our focus has been to lay the groundwork for future advancements, positioning
this work as a blueprint for how similar objectives can be achieved more efficiently given
additional time and resources.

Key among our achievements is the construction of a virtual environment with the necessary
libraries for deploying ML and DL techniques utilizing GPU power. This environment also
includes tools for data visualization, statistical analysis, and a Jupyter Notebook user interface,
ensuring that our work is not only reproducible, but also accessible and easily understood.

Further, we have assembled bioimage datasets from MINKA and other sources, and organized
them in a generalized structure useful for the creation of various AI models and integration of
additional datasets. These images have been meticulously preprocessed, resized, and
subjected to data augmentation, especially for species with a smaller number of images.

In the domain of AI model generation, we have devised a broad spectrum of tools and models
tailored to different taxonomic ranks. For the kingdom taxonomic rank, we have developed five

9



D4.3 AMOVALIH code and documentation
ANERIS #101094924

unique models and one distinct model for each phylum within these kingdoms. These efforts
culminated in the creation of a flexible hierarchy of AI models, which is navigated with the help
of a JSON configuration file detailing the models’ specific hierarchy and characteristics.

Lastly, we have also set up another virtual environment equipped with the necessary libraries to
implement the Models API using FastAPI as the primary technology and NoSQL database for
persistent and adaptable data storage. This “API of APIs” facilitates the integration of both
internal and external AI models. The API boasts endpoints that enable model registration,
viewing, modification, and image classification. Moreover, it incorporates endpoints for user
feedback, model statistics, and user reputation, thereby fostering the implementation of hybrid
AI via continuous model retraining based on users feedback

2. State of the art
We aim to harness and integrate methodologies from two primary AI fields: Machine Learning
(ML) and Deep Learning (DL). ML, as the foundational approach for pattern identification and
complex problem-solving. However, with the emergence of DL, particularly in image
classification, a discernible set of advantages and disadvantages between these two
methodologies has surfaced. Comparative analyses indicate that while ML models excel in
smaller-scale datasets, DL models outperform in terms of recognition accuracy and are ideally
suited for larger-scale datasets (Wang, Fan & Wang, 2021).

Recently, Hybrid AI and Hierarchy AI have become the center of attention within the AI
community (Guo et al., 2022), credited to their improved performance and accuracy. These
methodologies employ techniques from various AI branches, with an aim to mitigate their
individual shortcomings and capitalize on their strengths.

APIs have gained significant importance in the AI ecosystem, enabling the integration and
utilization of AI models. They provide a flexible interface where users can integrate their AI
models, apply them, and offer valuable feedback (Liang et al., 2023). This fosters the
development of Hybrid AI by integrating the feedback loop into the system, promoting
continuous model improvement. A robust API facilitates easier and more effective collaboration
among AI researchers, developers, and end-users, enhancing model capabilities and
accelerating AI evolution.

As MINKA is committed to promoting citizen engagement and aligning with the SDGs, the
deployment of ethical AI principles is essential. Such principles ensure that AI deployment is
inclusive, respects privacy, promotes transparency, and conforms to legal and societal norms.
This chapter aims to delve into the current state of the art in bioimage preprocessing, combined
ML and DL methodologies, hierarchy AI, API for AI models integration, blended AI, and ethical
AI.

10



D4.3 AMOVALIH code and documentation
ANERIS #101094924

2.1Bioimage preprocessing

In the realm of bioimage analysis and classification, preprocessing is of paramount importance
for achieving a reliable and accurate classification model (Moradmand, Aghamiri, and Ghaderi,
2019). The need to adapt these preprocessing techniques to the specific demands of the
problem at hand has been well documented (Bernal, Sánchez, and Vilariño, 2013).

Given our goal to generate a hierarchy of models capable of accurately classifying bioimages
down to the phylum level, the quality and size of the image dataset are of crucial significance
(Perez and J. Wang, 2017). Our strategy for expanding the dataset involves data augmentation,
executed by applying various transformations to the original images. Data augmentation
techniques are typically divided into three categories (Xu et al., 2023):

● Model-Free: Traditional transformations such as cropping, zooming, rotating, flipping,
and distorting that do not require a pre-trained model.

● Model-Based: Utilize trained AI models.
● Optimization Policy-Based: Ascertain the optimal operations with suitable parameters

from a vast parameter space.

Augmentor (Github, 2023) is an open-source library that provides a wealth of functions for
applying augmentation techniques documented in the literature (Bloice, Stocker, and Holzinger,
2017). This library can conveniently generate over ten images from one, though a significant
tuning component is required: the animals and plants in the images should not undergo
excessive deformations, as deformed images across some species may bear similarities.

Image features extraction is another crucial phase in bioimage analysis and classification,
particularly when employing ML techniques. Feature extraction techniques aim to reduce data
dimensionality and draw out pertinent patterns, noticeably influencing the efficiency and
performance of the AI models intended for character recognition (Trier, Jain, and Taxt, 1996).
There is an array of feature extraction methods suitable depending on the needs and
characteristics of the data (Hall et al., 1971). However, these techniques generally fall into three
groups (Kumar & Bhatia, 2014):

● Extraction of statistical distribution features of the points.
● Global transformation and series expansion, such as Fourier, Hadamard, and Rapid

transforms.
● Extraction of geometrical and topological features representing both global and local

properties of characters, such as strokes.

A plethora of techniques exist for this extraction, and the selection heavily relies on the problem
specifications, making it challenging to identify the optimal ones for the dataset at first glance.
Nonetheless, it was found that the Bag of Features (BoF) serves as an excellent technique for
ML image classification problems, providing a solid starting point (Loussaief & Abdelkrim, 2016).

11



D4.3 AMOVALIH code and documentation
ANERIS #101094924

2.2Combined Machine Learning and Deep Learning methodologies

The singular application of AI models, while simpler to build, train, and faster in computational
speed, are limited in their capabilities (Moazamnia et al., 2019). Current advancements in
technology and increased computational power allow for a more robust approach combining
multiple AI methodologies, achieving increased accuracy and stability. Despite the requirements
of a higher level of knowledge, computational power, and intricate parameter tuning, the
integration of multiple AI models has brought about significant enhancements in prediction
capabilities and is considered the optimal approach for our bioimage classification problem
(Wang & Srinivasan, 2017).

We aim to utilize the ML and DL branches of AI, each offering unique advantages and
disadvantages. Therefore, it is essential to explore the most effective methodologies of these
branches.

2.2.1 Machine Learning Applied to Bioimages

As an advancement of classical statistical approaches, ML algorithms offer ease of
implementation and improved results (Breiman, 2001), hence becoming the core of AI. ML
algorithms learn rules from large datasets to identify dominant patterns and make predictions on
new data, using different strategies and methodologies based on the characteristics of the
dataset and the problem to solve (Loussaief & Abdelkrim, 2016).

The used dataset consists of bioimages, for which the extraction of a large set of features is
critical for generating different image classifying ML models. Fortunately, there are many options
available for this purpose (Popescu & Sasu, 2014). Once the necessary features are extracted,
we can choose models from the most common ML categories:

Supervised Learning

Supervised learning models use labeled data for training and exploration, identifying patterns to
map new data inputs into the desired labeled outputs. The primary task of these models is to
construct an estimator capable of predicting the label of an object using its extracted features
(Nasteski, 2017).

Supervised learning methods fall into the following categories (Ray, 2019):

1. Regression algorithms: Constantly modeling the relationship between variables refined
using a measure of error in the predictions made by the model.

2. Instance-based algorithms: Modeling of a decision problem with instances of training
data considered important to the model. These algorithms take less time for training but
more time for predictions.

3. Decision tree algorithms: Generate a decision tree model that maps the features of a
data entry to the output value, with every tree leaf representing a class label and every
branch a conjunction of features defining the label class.

12



D4.3 AMOVALIH code and documentation
ANERIS #101094924

4. Bayesian algorithms: Based on Bayesian statistics, these algorithms use Bayes’
Theorem to update probabilities based on new data. They create a probabilistic model
for classification and regression problems, providing predictions and quantifying the
uncertainty associated with them.

5. Artificial Neural Network (ANN) algorithms: While these can be both supervised and
unsupervised, we will apply them in the DL context.

6. Deep Learning algorithms: These are complex modern updates of the ANN and can be
supervised, unsupervised, and semi-supervised.

The performance of these algorithms depends on the types of data and parameter
configurations. Nevertheless, the most used ones with the potential to solve our bioimage
classification problem are (Caruana & Niculescu-Mizil, 2006):

Support Vector Machine (SVM): SVM is a traditional ML technique that does not fall into any of
the previous categories. It works by finding the best hyperplane that separates data into different
classes, handling high-dimensional data well, making it a suitable option for our large-scale
bioimage classification problem (Lin et al., 2011).

Logistic regression: Logistic regression is a type of regression algorithm that focuses on
explaining a dependent variable from a function with multiple independent variables, i.e., the
extracted features (Menard, 2002). It performs well with specific types of data with very
descriptive features. However, in image classification problems, its effectiveness is contingent
on the appropriateness of the image feature extraction (Li, Bioucas-Dias, & Plaza, 2013).

Naive Bayes: The Naive Bayes algorithm is a type of Bayesian algorithm known for its high
accuracy without requiring a training phase. However, it endures substantial computational
pressure due to distance computations in the space of local features (Zhu, Jin, Zheng, et al.,
2014).

K-Nearest Neighbors (KNN): KNN, a type of instance-based algorithm, decides on the label of
an image by searching for the k images in the training set most similar to the image to be
classified. It then performs a class-weighted frequency analysis. Its effectiveness in image
classification has been demonstrated using local features and interest points extracted with
SIFT or SURF to train the algorithm (Amato and Falchi, 2010).

Decision tree: Decision trees, a type of decision tree algorithm, have a top-down branched
structure that can generate rules to filter datasets into their appropriate categories/labels
effortlessly. Additionally, they can highlight the relative importance of different variables in the
system being studied (Yang et al., 2003). Even though they can be unsupervised, it does not
apply to our case study.

Unsupervised Learning

Unsupervised learning models are typically used when the data is not labeled, aiming to
discover inherent patterns or structure within the data. In contrast to supervised learning models

13



D4.3 AMOVALIH code and documentation
ANERIS #101094924

that focus on predicting labels, unsupervised learning models cluster the data into categories
based on the data’s internal similarities and differences (Barlow, 1989).

Semi-supervised Learning

Semi-supervised learning models are beneficial when a large portion of the data is labeled, and
only a small part is unlabeled. These models leverage the unlabeled data to enhance the
learning accuracy of the model, while supervised learning only uses the labeled data. In the
context of this work, semi-supervised learning models may not be as effective as supervised
learning models due to the availability of entirely labeled datasets (Engelen & Hoos, 2020).

2.2.1.4 Reinforcement Learning

While Reinforcement Learning (RL) was not used for our current approach, its significance in
the AI field warrants a brief overview. RL models involve an agent learning how to solve a
problem through trial-and-error interactions with a dynamic environment. The typical formulation
used for RL problems is the Markov Decision Process (MDP) (Barlow, 1989).

In RL, an agent perceives its environment and performs actions to receive a reward or penalty
(Kaelbling, Littman, & Moore, 1996). Over time, the agent learns the environment’s dynamics,
thereby developing a strategy or policy that maximizes the cumulative reward. This learning
process differentiates RL from supervised learning, as it does not rely on predefined input/output
pairs (Dayan and Niv, 2008).

RL methods fall into three categories:

1. Model-based: The agent learns a model of the environment that predicts the next state
and reward based on its actions. The model can be used for planning, allowing the agent
to simulate future outcomes and choose actions that lead to the desirable outcomes
(Moerland et al., 2023).

2. Model-free: The agent learns directly from experience without building an explicit model
of the environment. Examples include Q-learning and SARSA.

3. Actor-critic: A combination of both model-based and model-free learning. The actor
learns a policy for selecting actions, while the critic learns to evaluate the actions taken
by the actor. This approach can be more effective in complex environments where both
planning and learning from experience are important. Examples include A3C and
DQN-CA.

Although RL’s potential in complex image classification problems has been demonstrated in
several cases (Bharati et al., 2022), its application has not been considered yet, primarily due to
the lack of literature supporting the use of multiple models as the Q-function in a RL model.

14



D4.3 AMOVALIH code and documentation
ANERIS #101094924

2.2.2 Deep Learning (DL)

DL enables computational models composed of multiple processing layers to learn data
representations with various levels of abstraction, thereby uncovering complex structures in
extensive datasets. The models utilize the backpropagation algorithm, guiding the adjustment of
internal parameters used to compute the representation in each layer from the previous layer
(LeCun, Bengio, & Hinton, 2015).

Studies report superior predictive performance of DL techniques applied to image processing
tasks compared to traditional classification techniques, especially in complex scenarios. This
advantage stems from DL’s capacity to directly identify and extract relevant features from a
given image dataset (Affonso et al., 2017). Numerous types of DL algorithms exist, but for
bioimage classification, Convolutional Neural Networks (CNN) stand out as the optimal choice.

Convolutional Neural Networks (CNN)

CNNs excel in image and video recognition tasks. Their strength lies in learning relevant
features directly from raw pixel data while exhibiting robustness to transformations in the input
image such as translations, rotations, and scaling (Affonso et al., 2017). CNNs achieve this
through a series of convolutional and pooling layers, followed by fully connected layers
(Nasr-Esfahani et al., 2019).

The first layer of a CNN is a convolutional layer that applies a set of filters (also known as
kernels or feature detectors) to the input image, resulting in a set of feature maps. Each filter is
a small matrix of values that convolves with a corresponding region of the input image. The
values obtained are then passed through a nonlinear activation function, such as the ReLU
(Rectified Linear Unit), to introduce nonlinearity into the network (Talathi & Vartak, 2016).

After several convolutional layers, a pooling layer is introduced to reduce the dimensionality of
the feature maps, simultaneously enhancing the network’s tolerance to minor variations in the
input image. Max pooling is a common type of pooling layer, retaining the maximum value within
a small rectangular window of the feature map and discarding the other values (Christlein et al.,
2019).

Lastly, one or more fully connected layers map the output of the convolutional and pooling
layers to a set of class scores. This process involves flattening the output of the previous layers
into a vector, passing it through dense (fully connected) layers, and then applying a softmax
function to produce a probability distribution over the output classes (Basha et al., 2020).

During training, the CNN is optimized to minimize a loss function, such as cross-entropy
between the predicted class probabilities and the true class labels. This optimization is typically
done using backpropagation, computing the gradients of the loss with respect to the network
parameters, and using these gradients to update the network weights via an optimization
algorithm like stochastic gradient descent (Zhu, Q. et al., 2020).

15



D4.3 AMOVALIH code and documentation
ANERIS #101094924

2.3Hierarchy AI

Within the context of our approach, Hierarchy AI refers to the organization of multiple layers of
models or algorithms, each designed to solve a specific sub-task or problem. The outputs of
each layer serve as inputs to the next, culminating in the final output produced by the last layer
(Manis & Madhavaram, 2023).

We propose to utilize a hierarchical arrangement of AI models, wherein each model performs a
progressively more detailed classification task than the one preceding it. The initial model
classifies an image according to the taxonomic rank of a kingdom. Depending on this
classification, the image is then processed by the subsequent corresponding model for a deeper
level of classification. In an ideal scenario, the final model in this hierarchy would accurately
identify the specific species present in the image.

The hierarchical approach in AI is often employed in complex systems involving many different
levels of abstraction. In essence, hierarchical AI is a potent method for designing systems
capable of learning and reasoning about intricate data in a structured and efficient manner
(Huang, Kumar, & Zabih, 1998).

Despite the existence of similar concepts such as multi-layer classification and cascade
classification (Song et al., 2019), the literature about constructing a hierarchy AI as defined in
our approach is scarce.

2.4Hybrid AI

Hybrid AI is a relatively new concept, and as such, its interpretation varies within the community.
There are two primary interpretations of the terms “blended AI” and “hybrid AI”:

1. Blended AI is seen as the integration of two or more AI technologies to achieve a
specific goal, while hybrid AI is the combination of AI models with human knowledge
(Dafonte et al., 2020; Ibrahim et al., 2022).

2. Both blended AI and hybrid AI are used interchangeably to denote the amalgamation of
two or more AI technologies (Yadav et al., 2023).

Regardless of the specific definitions, both blended and hybrid AI aim to enhance the
performance and capabilities of AI systems by combining multiple technologies or approaches.
In this document, we will employ the term “blended AI” as the integration of different AI models,
while “hybrid AI” refers to the coupling of AI models with human knowledge.

The efficacy of blended AI in enhancing model performance and accuracy has been
demonstrated across various fields (Corchado and Aiken, 2002). However, our approach
proposes a unique system where an iterative learning process stems from the results of the
blended AI. This process works by incorporating human responses into the models’ prediction
adjustments. The models consider the human’s feedback, the reliability of the source (the

16



D4.3 AMOVALIH code and documentation
ANERIS #101094924

person’s reputation), and the model’s stats to refine their future responses, thereby achieving
the implementation of hybrid AI. Unfortunately, there is scant literature available on this subject.

2.5Ethical AI

This effort aims to ensure that the public can access, understand, and interpret the data fairly
and equitably. We intend to develop comprehensive documentation that emphasizes
transparency, interpretability, and reusability to positively influence social ethics (Ahmad et al.,
2022). To achieve this, a clear definition and context surrounding ethics and AI are necessary.

AI ethics can be approached from various perspectives, but we focus on a human-centric AI
outlook as the emerging overarching value framework of AI ethics (Lepri, Oliver, & Pentland,
2021). There is also a nature-centric AI perspective that considers the natural environment and
climate (Kazim & Koshiyama, 2021). This conception of ethics incorporates environmental
concerns as centrally as it does human concerns, including humans, animals, and the natural
environment. Hence, adopting a nature-centric AI view could lead to a human-centric AI
approach.

Given this context, we will follow the Ethics Guidelines for Trustworthy AI 2019, crafted by the
High-Level Expert Group on AI appointed by the European Commission, as our guide for
implementing an ethical and trustworthy AI (Smuha, 2019). The European Union posits that AI
systems should be human-centric, and trustworthiness is prerequisite for people and societies
to develop, deploy, and use AI systems. To achieve this trustworthiness, the AI HLEG uses
Fundamental Rights as the basis for Trustworthy AI (Smuha, 2019):

● Respect for human dignity.
● Freedom of the individual.
● Respect for democracy, justice, and the rule of law.
● Equality, non-discrimination, and solidarity.
● Citizens’ rights.

From these Fundamental Rights spring a list of ethical principles in the context of AI systems:
respect for human autonomy, prevention of harm, fairness, and explicability (Hickman & Petrin,
2021)

These principles form the foundation of an Ethical AI following the AI HLEG guidelines (AI,
2019). To integrate this, certain requirements are necessary:

● Human agency and oversight: Fundamental rights, human agency, and human
oversight.

● Technical robustness and safety: Resilience to attack, fallback plan, general safety,
accuracy, reliability, and reproducibility.

● Privacy and data governance: Respect for privacy, quality and integrity of data, and
access to data.

● Transparency: Traceability, explainability, and communication.

17



D4.3 AMOVALIH code and documentation
ANERIS #101094924

● Diversity, non-discrimination, and fairness: Avoidance of unfair bias, accessibility,
universal design, and stakeholder participation.

● Societal and environmental wellbeing: Sustainability and environmental friendliness,
social impact, society, and democracy.

● Accountability: Auditability, minimization and reporting of negative impacts, trade-offs,
and redress.

Different groups of stakeholders should play distinct roles in ensuring these requirements are
met (AI, 2019):

● During development, we should implement and apply the requirements to design and
develop the processes.

● During deployment, we should ensure that the systems in use and the products and
services offered meet the requirements.

● End-users (citizens) should be informed about these requirements and able to request
their enforcement.

18



D4.3 AMOVALIH code and documentation
ANERIS #101094924

3. AMOVALIH development
Accurately classifying all known species is a significant challenge due to the constraints of
resources and time. To counter this, our approach aims to amplify classification capabilities by
developing an API.

The system is designed to empower authorized users to add and select from a broad array of
classification models, with an objective to establish a more adaptable and customizable platform
for species identification. We intend to accomplish the following through this platform:

1. Acquire and preprocess the requisite quantity of bioimages.
2. Generate AI models for classifying bioimages using ML and DL techniques.
3. Combine AI models using hierarchy AI methodologies.
4. Integrate our AI models into the API, along with enabling the integration of external AI

models.
5. Enable hybrid AI by utilizing the users feedback, reputation, and model stats effectively.

A crucial aspect of our targeted system involves implementing a reusable, efficient system to
manage image acquisition and AI model generation across multiple datasets. We have
established a virtual environment for seamless deployment, thereby simplifying the model
creation process, enhancing reproducibility, and ensuring ease of use and compatibility across
diverse systems.

In the upcoming sections, we detail our methodology, starting with image acquisition from
diverse sources. We will discuss data preprocessing strategies, potential dataset issues, the
creation of AI models using advanced ML and DL, and their combination to generate a hierarchy
of AI models. We will also cover the integration of these models into the API and the use of
hybrid AI to utilize user feedback for model refinement and adaptive learning.

3.1 Image acquisition

To establish a rich, comprehensive dataset, we needed a large quantity of high-quality images
representing a vast array of species. This process commenced with the acquisition of
research-grade species images from the MINKA dataset. We then generated a CSV file that
encapsulated essential data about these images, including associated taxonomic levels,
location, and image URLs. This CSV file subsequently played a pivotal role in structuring and
organizing our images as it served as the foundation for the organization and structure of our
images.

The images were organized in a hierarchical manner, with each image placed within a cluster of
folders representing various taxonomic ranks, down to the most specific identified taxon per
image. This hierarchical structure has several advantages:

19



D4.3 AMOVALIH code and documentation
ANERIS #101094924

1. Accommodation of varying taxonomic ranks: This structure allows us to use images at
different classification levels. For example, an image with information up to the phylum
can be used for broader classification models, while an image with full taxonomic
information can be employed for refined species-level models.

2. Smooth model training: By segregating images based on their lowest taxon, we improve
the performance of our classification models.

3. Integration of additional images: The organized folder structure permits the easy addition
of images from various sources, thus enhancing the robustness of our models. New
images can be matched to the appropriate taxonomic rank within our structure.

4. Consistent and relevant image inclusion: All images contribute meaningfully to our
models, as only images sharing at least one taxonomic rank with the structure from the
MINKA dataset are included.

Through the use of Python functions, we download and organize the images, resulting in a
collection of 129,823 images covering 4,664 species. To expand our dataset, we added images
from other repositories. This enhanced our models’ robustness and species coverage, and due
to our organized structure, we could seamlessly integrate these new images into our existing
dataset for their use in model development and training.

Our dataset has grown substantially and now includes a vast collection of high-quality, research-
grade images. Throughout the data collection process, maintaining dataset quality has been a
key principle.

Adding images indiscriminately from the internet could risk the quality of our dataset. Lower
quality or less accurate images could negatively affect AI models trained on this dataset, leading
to less reliable and inaccurate predictions.

Moreover, the principle of diminishing returns comes into play. Each additional image brings a
reduced benefit in terms of improving model performance, especially with an already large and
diverse dataset like ours. Conversely, the costs and resources needed to process and manage
a continually growing dataset keep rising.

Given these considerations, we have decided that our current dataset, balanced across species
and providing comprehensive coverage, is sufficient for our needs. We will not source additional
images from additional repositories.

3.2Data preprocessing

Data preprocessing is a vital step in generating robust AI models, particularly when dealing with
datasets of variable quality, like in our approach which includes images from MINKA and other
sources. To maintain consistency during AI model training, we decided to standardize all images
to the same resolution. This process involved both upscaling smaller images to enhance their
resolution and downscaling larger ones to decrease their resolution. This standardization allows
AI models to extract relevant features.

20



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Before we began preprocessing, we decided to eliminate species with insufficient image
numbers.

We set a threshold of 10 images, as generating a minimum of 100 images for AI model training
would be impossible, even with image augmentation, if the species had less than 10 images.
We used the “remove_species_with_less_than_n_images” function to systematically remove
folders with fewer than the set number of images per species. After this process, our dataset
was reduced from 524,117 images of 4,664 species to 521,628 images of 4,149 species.

In terms of selecting a common resolution for AI model training, we chose the standard 256x256
resolution (Zhu, J. et al., 2020) for several reasons:

● Preserving image details: A resolution of 256x256 sufficiently captures the details for the
model to effectively recognize and interpret image features, ensuring crucial information
is not lost during resizing.

● Computational efficiency: This resolution strikes a balance between capturing image
detail and computational cost. Higher resolutions might offer more detail, but they would
increase processing power requirements and lengthen training times. Conversely, lower
resolutions may decrease the computational load but compromise the model’s learning
effectiveness.

● Compatibility with pre-trained models and popular architectures: Several popular
Convolutional Neural Network (CNN) architectures and pre-trained models, such as
AlexNet (Alom et al., 2018), VGG (Paymode & Malode, 2022), and ResNet (Ning et al.,
2022), are designed or adaptable for 256x256 input images. Resizing images to this
standard increases our ability to leverage these architectures and pre-trained models
efficiently.

Resizing all images in our dataset to a consistent resolution of 256x256 allows us to balance
image detail and computational efficiency, while maintaining compatibility with many widely-used
AI models and architectures.

3.2.1 Image resizing

Standardizing our dataset for AI model training required us to resize all images to a 256x256
resolution. We accomplished this using functions found in “images preprocessing.ipynb”.

First, we used the “extract_and_save_image_paths” function to pull all image paths from our
dataset and store them in a CSV file. Then, the “read_image_paths_from_csv” function read
these image paths from the CSV file and placed them in a list for easy access. Lastly, the
“resize_image” function resized each image based on its original size. For images that needed
an increase in resolution, we used an advanced interpolation method to maintain image quality.
Conversely, for images larger than the desired resolution, we applied a simpler interpolation
method.

21



D4.3 AMOVALIH code and documentation
ANERIS #101094924

After the resizing process, we successfully resized a total of 519,645 images, significantly
reducing our dataset’s size from 67.5 GB to 6.59 GB. Although we lost about 0.85% of the
dataset due to images with unusual formats that could not be resized, the benefits outweigh the
losses. The post-resizing dataset is 90.23% smaller than the original, significantly improving our
data processing capabilities and efficiency.

3.2.2 Dataset splitting

Following the image resizing, the next critical step is partitioning our dataset into three subsets:
train, test, and validate. This strategic division enables the effective training, validation, and
testing of our AI models, helping to avoid overfitting and facilitating accurate model performance
evaluation. Consequently, we divided the “resized_images” dataset into three folders:
“images_train”, “images_test”, and “images_validation”.

In executing this process, we opted for a stratified sampling technique to maintain the species
distribution within each subset. Stratified sampling ensures that the proportion of images per
species in the training, testing, and validation sets reflects their original distribution in the entire
dataset (Liberty, Lang & Shmakov, 2016). This strategy is critical given the varying number of
images per species, as preserving this diversity is vital for our AI models to effectively learn
across the complete dataset.

The typical convention for dataset partitioning allocates 70-80% for training, 10-15% for
validation, and 10-15% for testing. This distribution provides the AI model with plenty of data for
effective learning during the training phase, while also retaining enough data for performance
evaluation and validation (Chassagnon, Vakalopolou, & Paragios, 2020). For our dataset, we
chose a split of 75% for training, 10% for validation, and 15% for testing. This allocation was
thoughtfully decided to optimize the balance between effective learning and precise
performance assessment (Kebonye, 2021).

We implemented the required functions to execute the dataset splitting. Here, the
“split_and_copy_files_recursive” function generates the requisite folder structures
(images_train, images_test, and images_validation), extracts the list of images for each folder,
and conducts a stratified sampling to distribute the dataset into training, testing, and validation
subsets while preserving the distribution of species.

Regarding folders containing images that do not correspond to a species folder (e.g., the
“Animalia” folder), the functions account for images at any taxonomic level. Such images are
also considered in the stratified sampling process, ensuring that the distribution of images
across the training, testing, and validation sets remains representative of the entire dataset.

After splitting, our dataset is divided into 387,894 training images, 81,758 testing images, and
49,993 validation images. This stratified distribution enhances model training efficiency,
mitigates overfitting, and enables precise performance evaluation.

22



D4.3 AMOVALIH code and documentation
ANERIS #101094924

In conclusion, splitting the dataset is a critical step in our pipeline. By dividing our dataset into
training, testing, and validation sets, we maintain species distribution, optimize our AI model’s
learning and generalization, and ensure precise performance evaluation, leading to robust and
reliable model outcomes.

3.2.3 Data augmentation

Following the splitting of our dataset into training, testing, and validation sets, the next step
involves the data augmentation process. Before initiating data augmentation, it is crucial to
conduct dataset splitting to avoid having augmented images derived from the same original
image distributed across different sets, which could potentially skew the model’s learning
process (Fawzi et al., 2016).

Our aim was to address class imbalance within the dataset while ensuring that the split of 75%
for training, 10% for validation, and 15% for testing was maintained. To achieve this, we devised
a data augmentation strategy that produces a varying number of augmented images for each
class, relative to the original number of images within that class (Bryan, 2020). This strategy
intends to achieve a balanced dataset by generating more images for underrepresented
classes.

The“apply_data_augmentation” function was developed to enable this process. It goes through
the “images_train”, “images_test”, and “images_validation” folders applying data augmentation
on each species. The target image count per species was defined as 82 for the training folder,
16 for the testing one, and 10 for the validation one, which determined the needed
augmentations. This approach balanced the dataset while keeping the overall proportions.

Using the “albumentations” library (Albumentations, 2023), we employed techniques such as
rotation, flipping, scaling, shearing, and brightness and contrast adjustments, carefully chosen
to ensure congruence with original images and introduce realistic variations. These techniques
are applied with parameters selected randomly within a defined range.

After augmentation, the image distribution was 616,019 for training, 99,336 for testing, and
60,627 for validation. To assess the impact of data augmentation on the class imbalance issue,
we calculated and compared the standard deviation of image counts for each species in the
training, testing, and validation sets, before and after data augmentation (Figure 1).

23



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Figure1. Effect of data augmentation on class imbalance: Comparison of Standard Deviation in
image counts per species.

We can observe a decrease in standard deviation while the number of images increases
indicating that the data augmentation process has effectively reduced the class imbalance,
allowing our AI model access to more balanced and diverse training data, thus enhancing its
overall performance.

3.4 Dataset derived problems

Addressing the challenges of our sizable dataset is crucial for constructing an efficient model.
Initially, we used a Convolutional Neural Network (CNN) model to classify images into five major
taxonomic ranks. Despite its simplicity, it required substantial training time on high-performance
GPUs. After reaching 27% accuracy, the improvement rate significantly slowed, implying over a
day of continuous training would be required, signaling inefficiency and overfitting potential
(Bilbao & Bilbao, 2017).

To address this, we modified the “load_dataset” function to select a smaller, random subset of
images for training, validation, and testing. This adjustment expedited training while preserving
data diversity and representation (Ying, 2019). Consequently, we selected 75,000, 10,000, and

24



D4.3 AMOVALIH code and documentation
ANERIS #101094924

15,000 random images for training, validation, and testing, respectively. The trained model was
saved as a structured data file.

Despite the improvements, this method is not the most efficient solution. Thus, we further
explored other techniques to optimize our model’s performance and reduce training time.

3.2.4 Feature extraction and selection

Mitigating dataset complexity via feature extraction and selection can potentially enhance a
model’s performance and reduce training time (Cai et al., 2018). We used pre-trained CNN
models like ResNet50, VGG16, and InceptionV3, which capture relevant features from images
effectively, having been trained on extensive datasets like ImageNet (Vijayan & Sherly, 2019).

We selected the ResNet50 model for feature extraction due to its balance between complexity
and accuracy and its resistance to the vanishing gradient problem thanks to its skip connections
and residual learning technique (Kumar, Kakarla, Isunuri, et al., 2021). This approach allows us
to train models on reduced-dimensionality representations of our images, improving efficiency,
especially when dealing with extensive datasets and limited resources.

Moreover, we will train DL models directly on images to potentially increase classification
accuracy, feature extraction and selection serve as complementary methods that enable
efficient model development and testing (Hira & Gillies, 2015).

3.2.5 Quality of the images

Even though we used research-grade images, some species still include low-quality images,
either poor in quality or unrelated to their respective taxonomic ranks. With over 600,000
images, manually cleaning the dataset is impractical. A potential solution is creating various AI
models using different approaches and technologies, forming a strategy resilient to the variable
image quality (Murtaza, Shuib, Abdul Wahab, et al., 2020).

Ensemble learning techniques might prove useful in this regard, combining multiple models to
enhance performance and robustness (Sagi & Rokach, 2018). Different models may excel in
different areas, and ensemble methods can leverage these strengths (Xiao et al., 2018). This
approach also adds resilience against potential data anomalies.

In conclusion, the primary dataset’s challenges are image quality and volume. This involves
combining advanced image processing techniques, diverse AI modeling strategies, and
ensemble methods. We anticipate this approach to result in a robust and efficient system for
image classification despite dataset quality variance. The proposed strategies should improve
our classification performance while ensuring computational efficiency.

25



D4.3 AMOVALIH code and documentation
ANERIS #101094924

3.3Model development

Developing our AI models requires a methodical blend of AI techniques, particularly ML and DL.
We aimed for a thorough hierarchy of models that could effectively classify species from
bioimages. This methodology also includes a participatory platform and reputation system to
enhance model performance and foster a collaborative AI environment.

This section details key processes in our model development. We begin with the creation of the
Utils library, a cornerstone of our modeling process. This is followed by feature extraction from
bioimages. Next, we discuss the design and integration of our kingdom and phylum models.
Lastly, we examine how these distinct models can form a hierarchy, decoding the intricacies of
species classification.

3.3.1 Utils

The essential utility functions include dataset generation and normalization, model checkpoints,
visualizations, and loading and saving of datasets and models. In this section, we delve into the
details of these utilities and their role in our model development process.

Dataset Generation and Normalization

The cornerstone of our model development is the dataset generation using the
“load_image_list” function. This function compiles a list of image paths and their associated
classes from a specified directory. If a sample size is given, it randomly selects a balanced
number of images from each class, preventing class-specific biases and enhancing model
generalization.

Following generation, the “process_images” function is employed for image processing and
normalization. Each image is transformed into a numpy array, and the pixel values are
normalized. This standardization aids the optimizer in converging faster and prevents it from
getting stuck in local minima or prolonged weight optimizations (Sun et al., 2020).

Save and Load Datasets

Post generation and normalization, “save_dataset” and “load_dataset” functions are employed
to handle the datasets. The “save dataset” function saves the X and y arrays for train, test, and
validation datasets as “.npy” files in a specified folder, allowing for easy future access without
redoing the initial processes.

On the other hand, the “load_dataset” function retrieves these saved datasets, saving
computational resources and time when reusing the same datasets. Additionally, this function
logs essential information like file paths and dimensions of the loaded datasets, supporting
debugging, understanding dataset status at various stages, and maintaining traceability.
Together, these functions enhance productivity and smooth the AI model development process.

26



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Model checkpoints and custom stops

Training complex AI models often encounters disruptions like system crashes, long execution
times, or overfitting (Pham et al., 2020). To address these, we have created two custom callback
classes: StopOnAccuracy and CustomModelCheckpoint.

StopOnAccuracy helps prevent overfitting by terminating training once a settled accuracy level
is reached. This stops the model from becoming overly specialized to training data, aiding its
generalization capability.

In contrast, CustomModelCheckpoint periodically saves the model state when notable accuracy
improvement is observed. This safeguard is crucial given the time-consuming nature of model
training. By saving at regular intervals, we ensure progress is not lost during disruptions,
providing a contingency plan.

Together, these classes optimize training, ensuring high accuracy, combating overfitting, and
preserving progress, leading to a more efficient and reliable model development.

Simple and Complex CNN model

We streamlined simple CNN model creation with the “create_simple_cnn” function. It uses
image dimensions and the number of dataset classes to build a CNN model, designed for
robustness and speed. The model includes convolutional layers for local feature capture, max
pooling layers for dimensionality reduction, a dropout layer to mitigate overfitting, and a final
fully connected (Dense) layer with softmax activation for class probability distribution (Christlein
et al., 2019).

Hyperparameters like the number of filters, kernel size, activation function, and dropout rate are
selected based on best practices and empirical observations. For example, the ReLU activation
function is favored in CNNs for its efficiency in handling the vanishing gradient problem (Talathi
& Vartak, 2016).

For more complex tasks, advanced CNN models can be created using “create_complex_cnn”,
“create_more_complex_cnn”, and “create_efficientnet_model functions”. These handle intricate
image patterns and higher-dimensional data.

The “train_cnn_model” function is key to the model training process. It takes the model, a model
name, training and testing datasets, and a set of hyperparameters to start training. This suite of
functions allows creating and training both simple and complex CNN models, catering to
different complexity levels.

Model visualization

Model visualization and analysis are vital in understanding model performance and learning
patterns (Krstinic et al., 2020). For this, we have developed four functions:

27



D4.3 AMOVALIH code and documentation
ANERIS #101094924

plot_confusion_matrix”, “plot_confusion_matrix_with_error_rate”, “plot_training_history”, and
“plot_sample_images_per_class”.

The function “plot_confusion_matrix” takes the model, test data, and class names to generate a
confusion matrix heatmap. This allows us to gauge the model’s performance on test data and
highlight any class the model struggles with (Krstinic et al., 2020).

The “plot_confusion_matrix_with_error_rate” function, like “plot_confusion_matrix”, displays a
confusion matrix but also incorporates error rate. This function helps understand the model’s
accuracy in terms of percentage, showcasing how frequently the model makes incorrect
predictions. This provides an enhanced view of model performance for each class.

The “plot_training_history” function tracks and visualizes the model’s learning process over
epochs by plotting accuracy and loss values for both training and validation datasets. Observing
the progression of these metrics offers crucial insights into how the model learns and adjusts its
internal parameters over the training process (Shekar, Revathy, & Goud, 2020). For instance, if
the training loss consistently decreases while the validation loss begins to increase, it may be
an indication of overfitting. Conversely, if the training and validation losses decrease while the
accuracy remains low, it could signal underfitting. Thus, “plot_training_history” assists in
identifying such scenarios, enabling model refinement.

Finally, the “plot_sample_images_per_class” function displays sample images from the training,
validation, and testing datasets for each class, providing a qualitative view of the model’s
performance.

These visualization and analysis functions facilitate a comprehensive understanding of the
model’s performance, behavior, and learning trajectory, aiding their fine-tuning and optimization.

3.3.2 Feature extraction

Feature extraction is crucial in ML and DL tasks, it aims to condense image data into a
lower-dimensional form while retaining significant and distinguishable information (Elharrouss et
al., 2022).

Initially, we used various techniques like calculating histogram descriptors, texture analysis
using the Gray-Level Co-occurrence Matrix (GLCM), and using pre trained CNNs like VGG16
for feature extraction. However, the huge data output from this approach posed significant
computational challenges.

Even using Principal Component Analysis (PCA) for dimensionality reduction could not alleviate
the computational burden. With processing times estimated to span days and a risk of system
failure due to excessive memory usage, we had to devise an alternative strategy that catered to
our computational limitations while ensuring consistent feature extraction across all datasets
and new images.

28



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Traditional image processing techniques

At this stage of processing, we introduced three primary functions.

The “color_space_transform” function enables the transformation of the image's color space,
allowing us to choose a color space that best highlights the features of interest in our images,
such as HSV or LAB (Bora, Gupta, & Khan, 2015).

The “texture_analysis” function provides means to extract texture-based features. Given the
countless textures in biological images, this function offers a robust mechanism to capture these
intricate details. It incorporates two texture analysis methods: GLCM” and LBP (Ding, 2017).

Lastly, the “histogram_descriptors” function assists in extracting color-based features by
calculating histogram descriptors. Histograms provide a powerful representation of an image’s
color distribution (Desai, Pujari, Akhila, et al., 2021).

Feature extraction using pre-trained CNNs

We use the “feature_extraction_cnn” function to unlock intricate, high-level feature patterns
within the images leveraging pre-trained CNNs. CNNs are renowned for their efficiency in
discerning complex patterns in image data, making them invaluable in our context (Bailer et al.,
2018).

Dimensionality reduction and adjusted feature extraction strategy

Given the high-dimensionality of the feature space, efficient management and processing
become challenging. For this, we use the “dimensionality_reduction” function, implementing
Principal Component Analysis (PCA) to condense our feature set (Thomaz & Giraldi, 2010).

However, we adjust our feature extraction strategy to meet our specific needs and constraints.
We fix the number of components to a constant value of 20, ensuring a consistent number of
features for each image, making it a flexible approach applicable to new images with similar
characteristics. While this method provides stability and consistency, we must consider the
potential drawback of retaining less important dimensions or unintentionally excluding significant
ones.

Feature selection and evaluation

We refine the feature set further with the “feature_selection” function, which performs feature
selection using Recursive Feature Elimination (RFE), an iterative method that determines the
best or the worst performing feature at each iteration (Yan & Zhang, 2015).

This approach identifies the most significant features contributing to the model’s performance,
thereby allowing us to focus our computational resources effectively. The function provides us
with control over the complexity and interpretability of our final model by letting us specify the
number of features we want to retain.

29



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Feature extraction and saving in batches

To address concerns regarding computational efficiency and memory management, our feature
extraction strategy employs a batch processing approach. The “extract_features_batch_pca”
function lies at the heart of this strategy, enabling the loading and processing of images in
batches.

The function applies each pre-trained model to an image batch and concatenates the extracted
features. If a path to an existing PCA model is provided, the function uses this model to
transform the features; otherwise, it fits a new PCA model on the features and saves it, aligning
with our modified feature extraction strategy.

For feature extraction from a single image, we use the “extract_features_single_image” function,
mainly useful for classifying new images introduced into the system.

The combination of PCA and batch processing creates a computationally efficient method that
preserves essential features, laying a robust foundation for subsequent ML tasks.

Application to dataset and new images

We applied our feature extraction strategy to the “kingdom_100000” dataset (subset of 68,662
processed images), using the “load_datasets” function to smoothly load our training, validation,
and test sets.

We leveraged the power of three pre-trained models: InceptionV3, VGG16, and ResNet50. For
each model, we defined the corresponding preprocessing functions, facilitating the extraction of
a diverse set of features from the images. Our choice of these models was driven by their
demonstrated robust performance in various image classification tasks (Stefenon, Yow, Nied, et
al., 2022).

The “extract_features_batch_pca” function was critical in extracting features from our training,
test, and validation sets. Each set of extracted features was saved in separate CSV files,
providing a consistent and reusable data representation for our AI models.

The size of our dataset experienced a significant reduction post feature extraction. From an
initial size of 39,427 MB, we ended with a considerably smaller one of 15.13 MB, an astounding
99,96% reduction in size (Figure 2).

Our feature extraction strategy strikes an optimal balance between computational efficiency and
feature preservation. By employing PCA with a fixed number of components, batch processing,
and leveraging pre-trained models, we have successfully extracted meaningful features from a
large image dataset without overloading system memory. This strategy sets a robust foundation
for subsequent steps in our pipeline, including the training of ML models and the classification of
new images.

30



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Figure 2. Dramatic reduction in data size from the original “kingdom 100000” dataset to the
feature-extracted dataset.

3.3.3 Kingdom taxon

This section focuses on outlining our approach to classify the high-ranking taxa, leveraging a
comprehensive strategy that incorporates both DL and ML methodologies.

Our roadmap includes the design, training, and refinement of various AI models of different
complexities and diverse feature combinations, with the goal of optimizing the precision of
bioimage classifications. Significantly, our process integrates both raw features of the images,
and predictions generated by AI models. This integration creates a resilient framework that
capitalizes on the strengths of multiple models for superior results.

The Kingdom taxon consists of five categories: “Animalia”, “Plantae”, “Fungi”, “Chromista”, and
“Protozoa”. We describe our effort to engineer, instruct, and assess a selection of models
responsible for reliably categorizing images into these discrete groups. Each model undergoes
a singular cycle of development, training, and evaluation, with the outcomes from each stage
guiding the configuration and implementation of subsequent models.

31



D4.3 AMOVALIH code and documentation
ANERIS #101094924

For this classification task, we used the “kingdom 100000” dataset, which includes a curated
collection of 68,662 processed images. The dataset is partitioned as follows:

● X_train: 4-dimensional structure with dimensions (51792, 224, 224, 3).
● y_train: 2-dimensional structure with dimensions (51792, 5).
● X_test: 4-dimensional structure with dimensions (6656, 224, 224, 3).
● y_test: 2-dimensional structure with dimensions (6656, 5).
● X_valid: 4-dimensional structure with dimensions (10214, 224, 224, 3).
● y_valid: 2-dimensional structure with dimensions (10214, 5).

Upon exploring the dataset and randomly sampling an image from each class and dataset, we
observed that despite the high-quality, research-grade images, certain images could potentially
challenge the classification process. As shown in Figure 3, images from categories like “Fungi”,
“Chromista”, and “Protozoa” may seem indistinguishable from one another and occasionally
resemble those from “Plantae”. The “Protozoa” category, characterized by a wide variety of
images ranging from plain text documents to images containing species from the “Plantae” and
“Fungi” taxonomic ranks, might confuse the model. Similarly, the “Animalia” category could pose
challenges due to its collection of nearly-black images.

While our objective is to classify as many images as accurately as possible, we acknowledge
that some images may not be classified correctly due to inherent ambiguity. This inevitable
challenge in the realm of model development is considered in our approach, setting realistic
expectations and ensuring a robust methodology.

All Kingdom taxonomic ranks

In this section, we present our initial strategy using a Convolutional Neural Network (CNN) to
classify images across five kingdoms. Our method involved an extensive exploration of various
CNN architectures, activation functions, and hyperparameters, aiming to exploit the rich image
content most effectively. We iteratively refined our model structure, balancing complexity and
performance while avoiding overfitting.

32



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Figure 3. Grid displaying a representative image from each class across the train, test, and
validation datasets.

Our selected hyperparameters were a batch size of 32 and 20 training epochs, balancing
computational efficiency and performance. We chose a learning rate of 0.0001 to enable a
controlled gradient descent during training. The CNN model extracted and learned the most
informative image features for classification, and we assessed its effectiveness through total
accuracy and a confusion matrix using the test data (Figure 4).

The model achieved an overall accuracy of 59.45%, a reasonable initial performance given the
task’s complexity. The confusion matrix further illustrated this with challenges in accurately
classifying “Chromista” and “Protozoa” images affecting the model’s performance.

In particular, “Chromista” and “Protozoa” images were correctly classified about 30% and 10%
of the time, respectively, often being misclassified as “Fungi”. Given these insights, we decided
to generate three additional models to further navigate the intricacies of our dataset and
enhance classification performance.

33



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Figure 4. Confusion matrix showing the classification results of the Kingdom All model.

Animalia, Plantae, Fungi - Protozoa, Chromista

Building on the experience gained from the initial CNN model, we identified an opportunity to
enhance performance by creating a distinction between the “Animalia”, “Plantae”, and “Fungi”
(APF) categories and the “Protozoa” and “Chromista” (PC) categories. This distinction aimed to
balance precise classification and the challenges arising from image quality variations,
particularly within the “Protozoa” and “Chromista” categories.

With slightly adjusted hyperparameters, we utilized the same CNN model as before, achieving
promising accuracy rates between 70% and 80% with minimal overfitting. These outcomes
indicated that our model was learning effectively from the training data, maintaining its predictive
performance on unseen data.

Despite these positive results, we attempted to enhance our model’s performance further, given
its potential as a robust basis for developing hierarchical AI models. We tried to incorporate pre-
trained models, such as EfficientNet (Tan & Le, 2019), but these attempts did not provide the
anticipated improvements.

34



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Without overfitting as a concern, we decided to construct a more complex CNN model. Using
the “create_complex_cnn” function, we constructed a deeper network with additional
convolutional and pooling layers, potentially improving classification performance by extracting
more intricate image features.

Following training, we evaluated the model’s performance using total accuracy and a confusion
matrix based on the test data (Figure 5).

The model achieved an accuracy of 89.53%, a significant figure considering the task’s
complexity and some image quality. The confusion matrix underscored the model’s near-perfect
performance in classifying the APF bioimages, with 98.49% accuracy. However, it struggled with
the PC bioimages, achieving only 18.28% accuracy. Even so, our model is adept at identifying
images from these categories, thereby providing valuable insights. As next steps we plan to
develop two more specialized models: one for APF images and another for PC images.

Figure 5. Confusion matrix showing the classification results of the Kingdom APF-PC model.

Animalia - Plantae - Fungi

In response to the initial models’ performance, we focused our efforts on the “Animalia”,
“Plantae”, and “Fungi” (APF) categories to further enhance classification accuracy. This
specialized approach lessened task complexity and enabled a concentrated exploration of the
unique traits within the APF categories, thereby improving the model’s predictive ability.

35



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Our efforts to develop this APF model encompassed an extensive exploration of network
architectures, hyperparameters, and training techniques. Despite the EfficientNet model’s
substantial performance improvement, the complex CNN model introduced earlier proved most
effective and accurate. More complex CNN models struggled to exceed 60% accuracy, with
slower learning rates.

The chosen model’s superior performance was attributed to its additional convolutional and
pooling layers, which extracted more detailed and high-level image features, a key factor for
boosting classification performance.

Following training, we evaluated the Kingdom APF model’s performance using its total accuracy
and a confusion matrix derived from the test data (Figure 6).

The Kingdom APF model achieved an accuracy of 73.27%. This is a substantial
accomplishment given the task’s complexity and the dataset’s varying image quality. Closer
inspection of the confusion matrix reveals varied performance across categories: around 80%
accuracy for “Fungi” and “Plantae” and about 55% for “Animalia”. Although the initial model
performed better on “Animalia” images, the Kingdom APF model provides the highest overall
accuracy.

Figure 6. Confusion matrix showing the classification results of the Kingdom APF model

36



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Protozoa - Chromista

Addressing the initial models’ struggles with “Protozoa” and “Chromista” categories, we created
a tailored Kingdom PC model, sharpening its focus on their unique traits to enhance
classification accuracy.

A key challenge was the discordant number of training images for these categories, which led to
over-prediction of the “Chromista” class. We resolved this by balancing our training set to
contain equal numbers of “Protozoa” and “Chromista” images, facilitating a more unbiased
learning environment and improved precision.

With a reduced dataset after balancing, we increased the number of training epochs. We
explored various model architectures and hyperparameters, including pre-trained models like
EfficientNet B0 and B3, and custom CNN models with different parameters. Finally, the complex
CNN model introduced earlier proved most effective and accurate.

Upon completing the training phase, we assessed the PC model’s performance by calculating
its total accuracy and generating a confusion matrix using test data (Figure 7).

The Kingdom PC model achieved an overall accuracy of 92.34%. Due to balanced training data,
the model had equal learning opportunities across both classes. The slightly lower “Protozoa”
accuracy could be due to inherent complexity or image quality variations. However, the marked
improvement from our initial models underscores our targeted approach’s success.

With these four models, each offering unique insights into different categories, we are now
prepared for the model stacking phase. Our goal is to leverage each model’s strengths, creating
an ensemble for more robust and precise bioimage classification.

37



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Figure 7. Confusion matrix showing the classification results of the Kingdom PC model.

Model Stacking - Ensemble Learning

To boost our predictive capabilities, we employed a strategy known as model stacking or
ensemble learning (Cui et al., 2021). This method combines the predictions of our four models,
feeding them as input features to a higher-level model, hence enhancing our dataset with
combined insights from the lower-level models.

The function “get_model_predictions” was employed to extract predictions from a set of
preprocessed bioimages using a variety of models. This enriched our feature dataset with 12
additional columns, each representing predictions from one of the four models.

However, exclusively applying ML models to the base models’ predictions did not yield
satisfactory outcomes. The confusion matrices bore a striking resemblance to the first model’s
results, with slightly lower accuracy, particularly for the “Animalia” class. Consequently, we
archived these 12 prediction columns in CSV files and later integrated them with the features of
CSV, generating comprehensive files with 33 columns for training, validation, and testing
datasets.

Upon verifying the integrity of these combined datasets, we trained various ML models,
including Support Vector Machines (SVM), Random Forest, and Gradient Boosting. Despite
extensive testing and fine-tuning, none of these models surpassed 60% accuracy. The Receiver

38



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Operating Characteristic (ROC) curve for the SVM model is presented (Figure 8) to illustrate its
performance across different classification thresholds. We display the ROC curve of the SVM as
it provided comparable results to the other models but required fewer computational resources.

The ROC curve is a graphical representation that illustrates the performance of a binary
classifier system as its discrimination threshold is varied. It plots the true positive rate (TPR)
against the false positive rate (FPR). The area under the curve (AUC) provides a collective
measure of performance across all potential classification thresholds where an AUC closer to 1
signifies superior model performance (Carter et al., 2016).

The AUC for “Animalia” is 0.678, implying that the SVM model has a 67.8% chance of ranking a
randomly chosen “Animalia” instance higher than a randomly chosen non-“Animalia” instance.
Similarly, the AUCs for “Chromista”, “Fungi”, “Plantae”, and “Protozoa” are 0.66, 0.74, 0.77, and
0.56, respectively.

The underwhelming performance of the ensemble models can be attributed to the high
correlation among the prediction errors of the base models, thus constraining the room for
improvement.

Moreover, the base models’ predictions were impacted by factors such as unbalanced data,
intricate and overlapping morphological characteristics, and limitations of the features and
models used. Unless improvements are made to the base models, the ensemble models’
performance is likely to remain poor.

Figure 8. ROC curves illustrating the performance of the SVM model in classifying the classes
“Animalia”, “Chromista”, “Fungi”, “Plantae”, and “Protozoa”.

39



D4.3 AMOVALIH code and documentation
ANERIS #101094924

3.3.4 Phylum taxon

Progressing further into the intricacies of biological taxonomy, we shift our focus from the broad
scope of kingdoms to the more granular differentiation of phyla. This level offers a detailed
perspective on organisms, sorting them based on common lineage and unique characteristics.
This section explores the creation and performance of models aimed at classifying organisms
into their corresponding phyla.

Our aim, considering our resource and time constraints, is not to supersede current AI models.
Instead, our focus is to demonstrate a methodology for constructing a hierarchical AI system.
We strive to build proficient models for each kingdom, thereby creating a model suite capable of
classifying from kingdom down to phylum. This sets the groundwork for a hierarchical AI system
for bioimage classification, linking the outputs of kingdom models to their respective phylum
counterparts.

Our strategy at this stage deviates from the one employed at the kingdom level. Rather than
creating multiple models for the different phyla, as done previously, we have adopted a different
approach: a single comprehensive model for each kingdom. This method, while potentially
sacrificing a degree of phylum-specific accuracy, equips us with the essential models to
construct a hierarchical AI system.

Animalia

We commenced by evenly selecting 100,000 images from the 12 available phyla within the
“Animalia” kingdom. Three of these phyla: “Ctenophora”, “Nemertea”, and “Spuncula”, had
fewer images, but still provided ample data for effective model training and testing.

Upon examining a subset of images, we noticed substantial similarities across phyla. Image
quality varied, and common elements, such as hands, abundant vegetation, and multiple
animals, were frequently observed. These factors pose a challenging classification task.

We dismissed the use of EfficientNet models due to their prior underperformance with similar
images. We instead chose a pragmatic approach and experimented with the three CNN models
of different complexity levels. The model of moderate complexity outperformed the others,
reaching an overall accuracy of 34.1%. While seemingly low, considering the context of 12
classes, varying image quality, and given our illustrative purposes, this performance was
deemed satisfactory.

Plantae

For the “Plantae” kingdom, we started with a balanced selection of 100,000 images from the 9
available phyla. Three phyla: “Marchantiophyta”, “Equisetophyta”, and “Pteridophyta”, had fewer
images. The images showcased extensive variation within phyla, including low-quality images,
dense vegetation, and images of plants on monitors.

40



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Once again, the medium complexity CNN model delivered the best results, despite some signs
of overfitting. The model achieved a commendable 73.19% accuracy, although it struggled with
phyla represented by fewer images. Notably, the “Marchantiophyta” phylum was frequently
misclassified, suggesting the need for a specialized model. However, in line with our project’s
illustrative nature, we refrained from creating phylum-specific models.

While the accuracy is commendable, it is worth mentioning that there are already highly
optimized models for plant classification, such as those under the Pl@ntNet 2023 initiative. Our
primary objective, however, still remains to showcase an effective methodology, rather than
surpassing these models.

Fungi

Our analysis of the “Fungi” kingdom began with 100,000 images evenly drawn from the four
phyla. We faced a significant class imbalance, with “Ascomycota” and “Basidiomycota” better
represented than “Microspora” and “Zygomycota”. The latter two lacked sufficient data for
testing and validation, leading us to focus on “Ascomycota” and “Basidiomycota”.

Using various CNN models, the medium complexity model emerged as the top performer,
showing improved training and validation set accuracy. Despite the “Fungi” kingdom’s inherent
challenges, our final model achieved a notable 84.59% accuracy, validating our targeted
approach.

Chromista

The “Chromista” kingdom dataset only comprised the “Ochrophyta” phylum. To enhance our
taxonomy, we aimed to classify images into two classes within this phylum:
“Coscinodiscophyceae” and “Phaeophyceae”, using around 6,000 images.

Despite some similarities, most images showed distinguishable class characteristics. As in
previous instances, the medium complexity CNN model performed best, showing no overfitting
and achieving a remarkable 94.38% accuracy. This underscores the potential of DL in
classifying similar classes within a specific phylum, even with fewer images.

Protozoa

In the “Protozoa” kingdom, our data only included the “Mycetizoa” phylum. We aimed to classify
images into two classes: “Myxomycetes” and “Protosteliomycetes”. However, the available
images, 195 for “Myxomycetes” and 2 for “Protosteliomycetes”, posed a significant challenge.

Due to the extreme class imbalance, our models achieved a predictably high accuracy of 100%
on the test set and 97.73% on the training set, as they learned to classify all images as
“Myxomycetes”. Additional model generation for the “Protozoa” kingdom would not yield
significant insights or improvements. This demonstrates the challenges of working with
imbalanced datasets and the need for balanced data for reliable model development.

41



D4.3 AMOVALIH code and documentation
ANERIS #101094924

3.3.5 Hierarchy AI models

Bioimage classification presents multiple complex challenges. Calling for innovative solutions,
we introduce a novel approach: a hierarchical AI system. This system integrates multiple AI
models, each with unique contributions to classifying bioimages across various taxonomic
ranks.

Earlier sections outlined the creation of AI models tailored for different taxonomic ranks, from
kingdom to phylum and class. We envision a network of interconnected models, forming a
comprehensive hierarchy. This is not just an intellectual pursuit but a practical, scalable
blueprint.

Our methodology guides a bioimage through taxonomic ranks utilizing the most suitable models
at each level. This approach offers a comprehensive classification pathway and enhances
overall accuracy by harnessing each model’s unique strengths.

In the following sections, we delve into this hierarchical AI system. We detail the process of
combining these models into a holistic hierarchy, explain how overall accuracies are computed
for each bioimage based on its system journey, and evaluate our models’ performance within
this hierarchical structure using new image sets.

Hierarchy generation

Biology’s taxonomic hierarchy inspired our structure of models as we mirrored its inherent
organization. Using our HierarchyAI class, we arranged various standalone models into a
coherent hierarchical setup. This class computes accuracy for each potential classification
route, generating predictions, classifications suggested by each model along the pathway, and
an overall confidence percentage.

Our hierarchical structure employs an adjustable JSON that houses the full model hierarchy,
each model reflecting a different taxonomic rank. The structure’s flexibility is remarkable:
hierarchy adjustments only require JSON modifications, bypassing code changes. The model
output at one level directs the next level’s model, navigating the image through the classification
tree.

We have illustrated the model hierarchy as a network graph (Figure 9) for comprehension. Each
node is a model, with directed edges symbolizing the transition from one model to another.
Node colors represent taxonomic ranks, and model accuracy is displayed below the model’s
name.

This model successively refines the classification level until it hits the target rank, like the
phylum level for “Animalia”, “Fungi”, and “Plantae”. Each model’s accuracy is logged in the
structure, assisting in calculating the cumulative accuracy of the hierarchy pathway.

A prediction output consists of three components:

42



D4.3 AMOVALIH code and documentation
ANERIS #101094924

1. A list of dictionaries outlining the predicted taxon rank and value, and the confidence
level for each model in the pathway.

2. Cumulative confidence for the final prediction, computed as the product of confidences
across the pathway.

3. Overall accuracy, calculated as the product of the accuracies of models used in the
pathway.

These components offer a thorough understanding of the predicted results. The list of
dictionaries illuminates the performance of each model, while total confidence and accuracy
quantifies the hierarchical model’s overall reliability.

Quantifying individual and total accuracy helps evaluate our hierarchical model. Individual
accuracies highlight performance at each level, indicating improvement areas and efficient
classification points. Total accuracy shows the model’s overall predictive capability, reflecting the
cumulative performance of all models within a specific classification pathway.

Computing the confidence level is crucial. While accuracy quantifies the model’s correctness,
confidence measures certainty in each prediction. Confidence for each model is determined by
the softmax probabilities from the model’s final layer, numerically expressing certainty about its
classifications (Wu, Y. et al., 2022).

Integrating accuracy and confidence provides a balanced perspective, making our image
classification approach robust and insightful.

Figure 9. Network graph illustrating the hierarchical configuration of our classification models.

43



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Hierarchy testing

We began with a HierarchyAI class instance, loaded with a JSON embodying our model
hierarchy. Next, we assembled a varied image dataset, two images for each possible
HierarchyAI prediction result, totaling 50 images from the internet.

Each image’s actual labels were identified through a preprocessing step, parsing the image’s file
name based on the dash character. Resulting labels represented kingdom, phylum, and class
associated with the image. Phylum and class were marked as “None” when unavailable,
whereas the kingdom was always present.

Predictions were generated using the HierarchyAI instance and preprocessed images, resulting
in a series of outcomes for each image. Predicted kingdom, phylum, and class were extracted
and integrated into a dataframe. This dataframe also held their actual counterparts and the
associated confidence and accuracy metrics for each prediction.

The dataframe was organized as follows: actual kingdom, actual phylum, actual class, predicted
kingdom, predicted phylum, predicted class, confidence, and accuracy.

To evaluate HierarchyAI’s performance, we crafted a graphical representation (Figure 10),
showcasing classification performance across taxonomic ranks. The kingdom was accurately
identified in 30 of the 50 images. This achievement can be credited to the three-model system
at the kingdom level, distinguishing features across kingdoms. However, accuracy dropped at
the phylum level, correctly classifying 12 of the 50 images. This could be due to the
single-model system at this level for each kingdom, limiting feature recognition across phyla
within a kingdom.

Figure 10: Chart of the distribution of prediction accuracy of the hierarchy AI model across
various taxonomic ranks.

44



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Despite these limitations, the test phase validated HierarchyAI’s potential. Our goal is
demonstrating the methodology rather than achieving maximum prediction accuracy.
HierarchyAI’s ability to integrate insights from individual AI models into a system offering
extensive taxonomic predictions at various levels is commendable. It offers accurate kingdom
rank predictions and detailed taxon prediction, confidence, and accuracy data, laying a robust
base for future taxonomy classification advancements.

3.4Models API

While there are existing AI model management services, we decided to develop a novel API,
designed to provide functionalities and benefits that go beyond those found in standard service
offerings. In comparison to other approaches, our Models API expands the scope of interaction
with AI models in significant ways:

1. Custom model registration and management: Our API encourages a dynamic,
user-driven ecosystem of AI models. Unlike using a fixed model catalog, we offer the
ability to register, modify, delete, and retrieve AI models provided by third parties without
modification. This flexibility promotes innovation and personalizes the user experience to
an unprecedented degree.

2. Enhanced image classification: We have enhanced the capability of model application to
images, extending beyond mere inference and prediction. This advancement elevates
the platform’s classification capabilities, offering a broader range of use-cases for users.

3. Performance metrics management: We provide the functionality to set, update, and
delete performance metrics. This feature contributes to informed model selection and
gives users greater control over their tasks, fostering a more user-informed environment.

4. Interactive user feedback management: Our API promotes an interactive,
community-driven platform, enabling users to generate, retrieve, and modify feedback for
specific images and models, aiding in the continuous refinement of models.

5. Reputation management: Our unique reputation system is designed to encourage high-
quality contributions and provide a quantitative measure of user input’s impact in the
creation of hybrid AI models.

The design of our Models API is based on adaptability and scalability. With direct integration
with the NoSQL database, it offers reliable and persistent data handling. Our approach aims to
provide a seamless experience of model management, handling a multitude of AI models, and
accommodating a wide range of user scenarios.

This Models API does not merely manage models but creates a dynamic ecosystem that
promotes innovation, flexibility, and a community-driven approach. By focusing on these facets,
our Models API offers a fresh and highly adaptable approach to AI model management. It
provides a powerful and complementary approach with respect to other initiatives, e.g., DEEP
as a Service (DEEP as a Service 2023).

45



D4.3 AMOVALIH code and documentation
ANERIS #101094924

3.4.1 API Endpoints

The API endpoints offer several enhancements and can effectively be utilized to integrate AI
models into platforms such as MINKA. Specifically, they provide the following benefits:

1. Model registration and management: Users can register, alter, delete, and access AI
models, cultivating a diverse model ecosystem.

2. Model application to images: Users can apply a chosen model to images in any standard
format, significantly improving classification capabilities.

3. Model performance metrics management: Users can set, modify, and remove
performance metrics, aiding informed model selection for various tasks.

4. User feedback management: Users can create, access, and modify feedback for specific
images and models, creating a useful feedback loop to fine-tune model performance.

5. Reputation management: A reputation system, based on users’ successful classification
rates, encourages quality contributions and determines the influence of users' inputs in
creating hybrid AI models.

The NoSQL database connects directly with the API, ensuring dependable data management.
The resulting endpoints, which are both robust and efficient, facilitate the process of image
upload and processing using one of the integrated AI models.

In sections below, we introduce an endpoint for hierarchy AI models, with its definition tied to the
hierarchy specific form and integrated models, rather than being dynamically defined.

The system employs strict consistency measures designed for various scenarios, including
changes in connectivity and database schema. These measures prevent disruptions and data
loss from database collections generated by GET, PUT, POST, and DELETE requests. This
comprehensive approach ensures that the API endpoints are ready for integration into
participatory platforms such as MINKA.

Figure 11 highlights the key functions of the API. This interface shows all the available endpoints
and the methods associated with each of them, offering a comprehensive view of the API
interaction capabilities.

Model registration and information

The AI model registration and management feature allows users to extend the
platform’s functionalities and customize their image classification tasks, driving
innovation and broadening the AI model ecosystem.

The model registration feature equips the platform with a structured approach to handle
various models. The Model and PostModel classes define the AI model structure
encapsulating the core properties: title, description, classification level, taxon, supported
image formats, accuracy, and API details (URL and key). The automatically generated

46



D4.3 AMOVALIH code and documentation
ANERIS #101094924

“id” attribute by the NoSQL database serves as a unique model identifier, essential for
referencing models in other endpoints.

Figure 11. Graphical interface of the AI models API.

The introduced operations include:

● Create: Users can register new models, with the system safeguarding against
duplicates based on “api url” and “title”. Upon successful registration, the system
returns the model’s details.

47



D4.3 AMOVALIH code and documentation
ANERIS #101094924

● Delete: Users can delete a model using the unique “ id”. If the model is not found,
an error message is returned.

● Read: By providing the model’s “ id”, users can access model details, with error
handling for cases where the model is not found.

● Update: Users can modify registered model details, enabling the platform to
adapt to changes like improvements in model performance or changes in
supported image formats.

The structured model design and comprehensive operations empower the platform that
integrates them with enhanced capabilities and robust interaction with AI models.

Image classification

Our Image Classification endpoint currently serves as a foundational tool. It classifies
images using specific AI models registered on the platform. Here is a brief overview of
the endpoint’s operation:

1. Model Verification: Verifies the existence of the user-specified “model id” in the
database.

2. Image Processing: The user-uploaded image is resized to a standard dimension
of 224x224 pixels.

3. Mock Classification: The endpoint returns a classification result detailing the
output of the selected AI models.

By returning the processed image and classification results, the endpoint has seamless
interaction between users, images, and AI models that may be integrated into MINKA.

Models stats

The Models Stats component serves to manage statistical data about AI model
performance. It is a protected component with secure access since these statistics are
crucial for informed decision- making during image classification and are assigned
internally.

The component registers and manages three core metrics for each model:

● Accuracy: Represents how often the model is correct in its predictions. High
accuracy indicates the model generally provides reliable results.

● Precision: Measures how many of the model’s positive predictions were correct.
High precision suggests that when the model predicts a specific class, it is likely
accurate.

48



D4.3 AMOVALIH code and documentation
ANERIS #101094924

● Recall: Assesses how many actual positive instances the model correctly
identified. High recall suggests the model is good at detecting positive instances.

The Models Stats component’s operations are as follows:

● Read: Retrieves stats for a specified model. This function is the only one
accessible to the public.

● Create: Stores statistical data for a specified model.
● Delete: Removes stats for a specified model.
● Update: Modifies stored stats for a specified model.

By maintaining these metrics, Models Stats ensures quality and reliability.

Model feedback

The Model Feedback component is crucial for a hybrid AI system, which combines AI
and human intelligence. It collects users feedback on AI model predictions, promoting a
cooperative learning atmosphere where AI models can adapt based on human
expertise.

The component collects feedback data like the correct image category, the model’s
predicted category, and the image itself. This data is stored and added to existing
feedback or used to create a new feedback entry.

Here are the operations managed by the Model Feedback component:

● Create: Takes the model ID, the correct and predicted values, and the image to
create or append a new feedback entry in the database.

● Read: Retrieves feedback data for a specific model returning the entire feedback
entry.

● Update: Accepts an updated feedback item and the ID of the associated image to
update

● the specific feedback entry in the database.
● Delete: Removes feedback for a specific model and image by deleting the

corresponding database entry.

This feedback channel enables continuous model refinement, contributing to model
performance improvement and an evolutionary development process driven by user
engagement.

Ultimately, feedback data combined with model stats and user reputation scores is vital
for decisions regarding model re-training. This integrated approach is at the heart of our

49



D4.3 AMOVALIH code and documentation
ANERIS #101094924

hybrid AI system, serving to enhance not only the accuracy of AI models but also the
overall reliability of the platform.

In short, the Model Feedback system encourages a unique human-AI collaboration in
line with our citizen science approach.

Users reputation

Lastly, we have incorporated the Users Reputation endpoint into our API. This feature
highlights how our hybrid AI system uses the reputation of users to assess the feedback
they give to the AI model. This fits perfectly with our citizen science approach, where we
value contributions from the user community. At the same time, we maintain a strong
system to ensure the quality of information provided.

The users reputation feature is crucial for assessing the reliability of users feedback and
represents a quality control mechanism for user inputs. Every user’s credibility is
defined by their reputation score, a measure based on past engagements and feedback
accuracy. This reputation system works hand in hand with the Model Feedback system,
offering a way to evaluate user feedback and thereby fine-tuning the AI models. Users
with higher reputation scores gain more credibility for their feedback.

The UserReputation model, which tracks a user's reputation, embodies this feature. It
considers five principal attributes: reputation, total entries, correct predictions, incorrect
predictions, and unconfirmed predictions. These metrics offer a well-rounded view of a
user’s performance and standing within the platform.

Here is a rundown of the key operations of the users reputation system:

● Create: Establishes a reputation entry for a user ID with the five required
attributes.

● Read reputation: Fetches a user’s reputation using their ID which aids in
evaluating the credibility of the user’s feedback in the hybrid AI system.

● Update: Accepts an updated reputation for the users as it evolves over time,
reflective of their interactions and feedback.

● Delete: Erases a user’s reputation record.

User reputation plays a pivotal role in our hybrid AI system. When the AI model’s
classification differs from the user’s feedback, the user’s reputation serves as a decision
point. High reputation could tip the final classification towards the user’s feedback,
whereas lower reputation could move the decision towards the AI model’s initial
prediction.

50



D4.3 AMOVALIH code and documentation
ANERIS #101094924

To sum up, by considering users reputation, we ensure the effective harnessing of
collective intelligence. This leads to a dynamic ecosystem where users actively
participate in improving the AI models, resulting in a continually evolving, flexible, and
user-focused platform.

3.4.2 Model integration

Model integration is a cornerstone of AMOVALIH, amplifying its learning capacity,
adaptability, and ability to tackle complex problems. This process involves the
incorporation of both local and external models, thereby boosting the system’s
capabilities and versatility.

In previous sections, we described the process for generating local models tailored to
address specific problems and evaluated for robust performance. Of these, the
hierarchy AI model is particularly noteworthy for its superior performance and unique
problem-solving approach, offering significant potential enhancements to our system.
These local models play a crucial role in testing the system integration, offering proof of
concept for the project, as they provide a controlled environment where we can examine
and refine the system’s ability to integrate, interact with, and retrain models based on
user’s feedback, which is key to enabling our hybrid AI vision.

Nevertheless, external models are the true engines of value for our API. They allow us
to tap into a wealth of knowledge and expertise beyond our local models, capitalizing on
different perspectives, techniques, and solutions that our locally developed models may
not encapsulate.

After integrating models, we conduct rigorous testing to ensure functionality and correct
output. The following sections provide a detailed view of each aspect of model
integration.

Local models

Our local models are critical to the system, featuring tailored solutions for complex
tasks. We have integrated our four CNN models, each providing robust classification of
various biological kingdoms.

● Kingdom ALL CNN: Predicts five different kingdoms with an accuracy of 59.45%.
● Kingdom APF-PC CNN: Classifies kingdoms into two broader groups with an

accuracy of 89.53%.
● Kingdom APF CNN: Detailed classification between three kingdoms with an

accuracy of 73.27%.

51



D4.3 AMOVALIH code and documentation
ANERIS #101094924

● Kingdom PC CNN: Detailed classification between two kingdoms with an
exceptional accuracy of 92.34%.

These local models offer benefits like flexibility, as we control the model’s architecture,
training, and used data. They are relevant to our use-cases, fine-tuned for the data they
will encounter, and can be quickly modified as needed.

Integration involves verifying the local model file, loading the model using its relative
path, and predicting the classification from the uploaded image. Any failure triggers an
HTTPException detailing the issue, aiding maintenance and debugging.

External models

Apart from local models, we have incorporated external models to broaden our system’s
capabilities, tapping into a wider pool of AI insights and techniques. A case in point is
our use of the Pl@ntNet API model, a plant classification model that, while not stating
its accuracy, covers an expansive range of classifications. This integration is a
proof-of-concept to demonstrate the viability of the approach to incorporate third-party
models, even outside of the scope of operational marine biology.

External models allow us to capitalize on cutting-edge AI research and methods from
diverse sources. They also help extend our classification capabilities beyond our model
training, and are often extensively validated and tested, ensuring reliable performance.

The integration process is similar to that of local models, but with more complex image
loading and header generation for correct image transmission to the external API. Any
failure in fetching the model or making the POST request triggers an “HTTPException”,
aiding debugging and maintenance.

Hierarchy AI models

Implementing hierarchy AI models marks a major enhancement to image classification
capabilities. These models employ a hierarchical approach, passing the output of one
model as input to the next. This reflects the hierarchical nature of taxonomic
classification (Kingdom, Phylum, Class, etc.), although automating or making it dynamic
is challenging due to each model’s unique characteristics.

Despite this complexity, Hierarchy AI models greatly improve predictions accuracy and
provide more detailed classification results, enabling the integration of diverse AI
models. To accommodate this, we have created a dedicated endpoint, POST /hierarchy
ai/1, for the hierarchy AI classification of kingdom and phyla.

52



D4.3 AMOVALIH code and documentation
ANERIS #101094924

While implementing these models is complex, they represent a significant
advancement. They facilitate accurate classifications while capturing biological
taxonomy’s hierarchical nature. As we add more models, this system can be expanded
and adjusted, helping deliver even more precise classification results.

3.4.3 Testing the integrated proof-of-concept models

Testing the integrated models is crucial to ensure they work correctly and effectively
within the system. As a reminder, there is an online version that can be used for testing
these models and other functionalities at the Models API GitHub.

Firstly, we inspect the /models endpoint through a GET request. This returns a list of all
models, including both local and external ones. For instance, the “Kingdom All CNN”
model is a local model, while the “Pl@ntNet API” model is an external one:

These responses contain essential details about each model like their origin, the taxonomic rank
they classify, and their accuracy.

53



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Next, we test the /image endpoint designed to accept an image input and return the
classification result. Below are example outputs for both local and external models:

Lastly, we test the /hierarchy ai/1 endpoint. It should return a list of classification results for each
taxonomic rank:

54



D4.3 AMOVALIH code and documentation
ANERIS #101094924

3.5Hybrid AI

Hybrid AI is an innovative approach that harmoniously combines the computational power of AI
with the knowledge and expertise of human users. The result is a robust, adaptive system that
continually enhances its predictive performance based on users feedback.

Our hybrid AI system revolves around a mechanism that leverages users feedback along with
their reputation and model performance statistics. This allows our system to adaptively learn
and retrain the models, thereby evolving the predictive capabilities of the model over time.
Initially, we only use user feedback for retraining the model, but this paves the way for more
complex interactions that include reputation and model stats.

In the following sections, we will discuss how we utilize user feedback for adaptive learning,
followed by an overview of the model retraining process. Our ultimate goal with this hybrid AI
system is to seamlessly blend artificial and human intelligence, resulting in a tool that not only
aids in identification and classification tasks but also continuously learns and improves with
each interaction, maintaining relevance and accuracy.

3.5.1 Leverage users’ feedback, reputation, and model stats

Our hybrid AI system’s key strength is its ability to learn and adapt continuously, facilitated by
harnessing users feedback, reputation scores, and model performance statistics. While we
value all feedback, the system primarily focuses on instances where the model’s prediction
conflicts with the user's feedback, i.e., incorrect predictions, as these instances offer great
potential for learning and improving the model.

The users reputation scores, ranging from 1 (poor) to 10 (excellent), reflect their historical
accuracy in providing feedback, with feedback from users having a higher reputation score
considered more reliable. Model stats such as accuracy, precision, and recall provide a
quantitative measure of the model’s current performance.

55



D4.3 AMOVALIH code and documentation
ANERIS #101094924

We need to calculate a decision value (V) based on these metrics, helping us decide whether to
incorporate the user’s feedback for model retraining. This decision value takes into account both
the user’s reputation and the model’s stats, and is calculated as follows:

V =(R·W1)−((A·W2)+(P ·W3)+(C·W4))

where:

● R represents the user’s reputation score, between 1 and 10.
● A represents the model’s accuracy, between 0 and 100.
● P represents the model’s precision, between 0 and 100.
● C represents the model’s recall, between 0 and 100.
● Wi are weights that range from 0 to 1.

The weights Wi can vary from 0 to 1, depending on the importance assigned to each metric. For
instance, a higher value can be set for W1 if user reputation is considered more important. We
ensure that the sum of all weights equals 1 through normalization. Consequently, the reputation,
accuracy, precision, and recall scores need to be expressed as ratios between 0 and 1 for
accurate calculations or further adjustment of this function.

This decision value function is designed to balance user inputs against model performance. For
instance, if a high-reputation user’s feedback conflicts with a well-performing model, the
decision value will be around or greater than 5, suggesting a need for manual review or
retraining based on user feedback. Conversely, if a user with a low reputation score contradicts
a well-performing model, the decision value will be significantly below 5, prompting us to rely on
the model’s prediction.

3.5.2 Model retraining and adaptive learning

The integration of adaptive learning and model retraining is a significant innovation within the
sphere of AI-enabled citizen science projects. This innovation enhances project capabilities by
facilitating continuous improvements in AI models via user feedback and a decision value
computation.

The application of this retraining and adaptive learning facilitates dynamic adaptation of
registered AI models to changing data. The models learn from previous errors and evolve to
augment their real-time predictive capabilities. This process harnesses users feedback to
enhance model performance and accuracy, leading to the evolution of a responsive AI system
that grows with the influx of new data.

The decision value determines whether the model will be immediately retrained (V > 5) or if the
image will be stored for an expert to assess the quality of the feedback for retraining (V <=5).
Currently, the decision value function consistently returns 7, ensuring all feedback contributes
directly to retraining.

56



D4.3 AMOVALIH code and documentation
ANERIS #101094924

For retraining, all image data is stored in a storage system and they are resized and stored for
subsequent model retraining, ensuring the complex system’s smooth operation and robust
response capabilities. Errors encountered during the feedback process or model retraining are
swiftly resolved, with detailed error responses facilitating swift and efficient debugging.

In practice, the retraining process stores user feedback, calculates a decision value where if it is
above 5, preprocesses the associated image, maps the correct value to its categorical
equivalent, and utilizes this data to retrain and save the model.

For a practical example of this retraining process, consider a scenario where a “Fungi” image
was misclassified as “Plantae” by the Kingdom Al model. Below are the details of this process:

Initial image classification request:

curl -X ’POST’
’http://API_HOSTNAME:8000/image/?model_id=6472204f4d944c97189313c3’
-H ’accept: application/json’
-H ’Content-Type: multipart/form-data’
-F ’image_data=@72951_95657.jpg;type=image/jpeg’

Initial image classification response:

Feedback submission for correct classification:

curl -X ’POST’
’http://API_HOSTNAME:8000/models_feedback/6472204f4d944c97189313c3’
-H ’accept: application/json’
-H ’Content-Type: multipart/form-data’
-F ’correct_value=2’
-F ’model_value=3’
-F ’image=@72951_95657.jpg;type=image/jpeg’

Feedback submission response:

57



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Retesting the image classification after retraining:

curl -X ’POST’
’http://API_HOSTNAME:8000/image/?model_id=6472204f4d944c97189313c3’
-H ’accept: application/json’
-H ’Content-Type: multipart/form-data’
-F ’image_data=@72951_95657.jpg;type=image/jpeg’

Retesting response:

Now, the model accurately classifies the image under the right category. This example
demonstrates how our hybrid AI leverages inaccurate predictions as learning opportunities,
thereby progressively improving the model’s accuracy and performance over time.

58



D4.3 AMOVALIH code and documentation
ANERIS #101094924

References
Affonso, C. et al. (2017). “Deep learning for biological image classification”. In: Expert Systems
with Applications 85, pp. 114–122. issn: 0957-4174. doi: 10.1016/j.eswa.2017.05.039.

Ahmad, K. et al. (2022). “Developing future human-centered smart cities: Critical analysis of
smart city security, Data management, and Ethical challenges”. In: Computer Science Review
43, p. 100452. doi: 10.1016/j.cosrev.2021.100452.

AI, HLEG (2019). High-level expert group on artificial intelligence. Ethics guidelines for
trustworthy AI. https://www.aepd.es/sites/default/files/2019-09/ai-definition.pdf.

Albumentations (2023). https://albumentations.ai/.

Alom, M. Z. et al. (2018). “The history began from AlexNet: A comprehensive survey on deep
learning approaches”. In: arXiv preprint arXiv:1803.01164 [cs.CV]. doi:
10.48550/arXiv.1803.01164.

Amato, G. and F. Falchi (2010). “kNN based image classification relying on local feature
similarity”. In: SISAP ’10: Proceedings of the Third International Conference on SImilarity
Search and APplications, pp. 101–108. doi: 10.1145/1862344.1862360.

Bailer, C. et al. (2018). “Fast Feature Extraction with CNNs with Pooling Layers”. In:
arXiv:1805.03096 [cs.CV]. doi: 10.48550/arXiv.1805.03096.

Barlow, H. B. (1989). “Unsupervised learning”. In: Neural Computation 1.3, pp. 295–311. doi:
10.1162/neco.1989.1.3.295. — (1989). “Unsupervised Learning”. In: Neural Computation 1.3,
pp. 295–311. doi: 10.1162/neco.1989.1.3.295.

Bartkowski, B., N. Lienhoop, and B. Hensju ̈rgens (2015). “Capturing the complexity of
biodiversity: A critical review of economic valuation studies of biological diversity”. In: Ecological
Economics 113, pp. 1–14. doi: 10.1016/j.ecolecon.2015.02.023. url: https://doi.org/
10.1016/j.ecolecon.2015.02.023.

Basha, S. H. S. et al. (2020). “Impact of fully connected layers on performance of convolutional
neural networks for image classification”. In: Neurocomputing 378, pp. 112–119. doi: 10.1016/
j.neucom.2019.10.008.

Bernal, J., J. Sa ́nchez, and F. Vilarin ̃o (2013). “Impact of image preprocessing methods on
polyp localization in colonoscopy frames”. In: Annu Int Conf IEEE Eng Med Biol Soc, pp.
7350–7354. doi: 10.1109/EMBC.2013.6611256.

Bharati, S. et al. (2022). “Deep Learning for Medical Image Registration: A Comprehensive Re-
view”. In: International Journal of Computer Information Systems and Industrial Management
Applications 14, pp. 173–190. issn: 2150-7988.

59



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Bilbao, I. and J. Bilbao (2017). “Overfitting problem and the over-training in the era of data:
Particularly for Artificial Neural Networks”. In: 2017 Eighth International Conference on
Intelligent Computing and Information Systems (ICICIS), pp. 173–177. doi: 10.1109/
INTELCIS.2017.8260032.

Bloice, M. D., C. Stocker, and A. Holzinger (2017). Augmentor: An Image Augmentation Library
for Machine Learning. arXiv: 1708.04680 [cs.CV]. url: https://arxiv.org/abs/1708. 04680.

Bora, D. J., A. K. Gupta, and F. A. Khan (2015). “Comparing the Performance of LAB* and HSV
Color Spaces with Respect to Color Image Segmentation”. In: International Journal of Emerging
Technology and Advanced Engineering 5.2. doi: 10.48550/arXiv.1506.01472.

Breiman, L. (2001). “Statistical Modeling: The Two Cultures (with comments and a rejoinder by
the author)”. In: Statistical Science 16.3, pp. 199–231. doi: 10.1214/ss/1009213726.

Bryan, N. J. (2020). “Impulse Response Data Augmentation and Deep Neural Networks for
Blind Room Acoustic Parameter Estimation”. In: ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. doi: 10.1109/
ICASSP40776.2020.9052970.

Cai, Jie et al. (2018). “Feature selection in machine learning: A new perspective”. In: Neurocom-
puting 300, pp. 70–79. doi: 10.1016/j.neucom.2017.11.077.

Carter, J. V. et al. (2016). “ROC-ing along: Evaluation and interpretation of receiver operating
characteristic curves”. In: Surgery 159.6, pp. 1638–1645. doi: 10.1016/j.surg.2015.12.029.

Caruana, R. and A. Niculescu-Mizil (2006). “An empirical comparison of supervised learning
algorithms”. In: ICML ’06: Proceedings of the 23rd international conference on Machine
learning, pp. 161–168. doi: 10.1145/1143844.1143865.

Chassagnon, G., M. Vakalopolou, and N. Paragios (2020). “Deep learning: definition and
perspectives for thoracic imaging”. In: Eur Radiol 30, pp. 2021–2030. doi:
10.1007/s00330-019-06564-3.

Chou, J.-S., M.-Y. Cheng, and Y.-W. Wu (2013). “Improving classification accuracy of project
dispute resolution using hybrid artificial intelligence and support vector machine models”. In:
Expert Systems with Applications 40.6, pp. 2263–2274. issn: 0957-4174. doi: 10.1016/j.eswa.
2012.10.036.

Christlein, V. et al. (2019). “Deep Generalized Max Pooling”. In: 2019 International Conference
on Document Analysis and Recognition (ICDAR), pp. 1090–1096. doi: 10.1109/ICDAR.2019.
00177.

Corchado, J. M. and J. Aiken (2002). “Hybrid artificial intelligence methods in oceanographic
fore- cast models”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 32.4, pp. 307–313. doi: 10.1109/TSMCC.2002.806072.

60



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Cui, S. et al. (2021). “A stacking-based ensemble learning method for earthquake casualty
prediction”. In: Applied Soft Computing 101, p. 107038. doi: 10.1016/j.asoc.2020.107038.

Dafonte, C. et al. (2020). “A Blended Artificial Intelligence Approach for Spectral Classification of
Stars in Massive Astronomical Surveys”. In: Entropy 22.5, p. 518. doi: 10.3390/e22050518.

Dayan, P. and Y. Niv (2008). “Reinforcement learning: The good, the bad and the ugly”. In:
Current Opinion in Neurobiology 18.2, pp. 185–196. doi: 10.1016/j.conb.2008.08.003.

DEEP as a Service (2023). https://deepaas.deep-hybrid-datacloud.eu.

Desai, P., J. Pujari, Akhila, et al. (2021). “Impact of Multi-Feature Extraction on Image Retrieval
and classification Using Machine Learning Technique”. In: SN Computer Science 2.153.
doi:10.1007/s42979-021-00532-9.

Ding, X. (2017). “Texture Feature Extraction Research Based on GLCM-CLBP Algorithm”. In:
doi: 10.2991/emim-17.2017.36.

Elharrouss, O. et al. (2022). “Backbones-Review: Feature Extraction Networks for Deep
Learning and Deep Reinforcement Learning Approaches”. In: arXiv preprint arXiv:2206.08016
[cs.CV]. doi: 10.48550/arXiv.2206.08016.

Engelen, J.E. van and H.H. Hoos (2020). “A survey on semi-supervised learning”. In: Machine
Learning 109, pp. 373–440. doi: 10.1007/s10994-019-05855-6.

Fawzi, A. et al. (2016). “Adaptive data augmentation for image classification”. In: 2016 IEEE
International Conference on Image Processing (ICIP), pp. 3688–3692. doi: 10.1109/ICIP.
2016.7533048.

Github (2023). Augmentor. https://github.com/mdbloice/Augmentor.

Guo, L. et al. (2022). “A deep learning-based hybrid artificial intelligence model for the detection
and severity assessment of vitiligo lesions”. In: Annals of Translational Medicine 10.10, p. 590.
doi: 10.21037/atm-22-1738.

Hall, E. L. et al. (1971). “A Survey of Preprocessing and Feature Extraction Techniques for
Radiographic Images”. In: IEEE Transactions on Computers C-20.9, pp. 1032–1044. doi:
10.1109/T-C.1971.223399.

Hickman, E. and M. Petrin (2021). “Trustworthy AI and Corporate Governance: The EU’s Ethics
Guidelines for Trustworthy Artificial Intelligence from a Company Law Perspective”. In: Eur Bus
Org Law Rev 22, pp. 593–625. doi: 10.1007/s40804-021-00224-0.

Hira, Z. M. and D. F. Gillies (2015). “A Review of Feature Selection and Feature Extraction
Methods Applied on Microarray Data”. In: Advances in Bioinformatics 2015. doi:
10.1155/2015/198363.

61



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Huang, J., S. R. Kumar, and R. Zabih (1998). “An Automatic Hierarchical Image Classification
Scheme”. In: Proceedings of the Sixth ACM International Conference on Multimedia,
MULTIMEDIA ’98, pp. 219–228. doi: 10.1145/290747.290774.

Ibrahim, K. S. M. H. et al. (2022). “A review of the hybrid artificial intelligence and optimization
modelling of hydrological streamflow forecasting”. In: Alexandria Engineering Journal 61.1, pp.
279–303. doi: 10.1016/j.aej.2021.04.100.

Kaelbling, L. P., M. L. Littman, and A. W. Moore (1996). “Reinforcement learning: A survey”. In:
Journal of Artificial Intelligence Research 4, pp. 237–285. doi: 10.1613/jair.301.

Kazim, E. and A. S. Koshiyama (2021). “A high-level overview of AI ethics”. In: Patterns 2.9, p.
100314. doi: 10.1016/j.patter.2021.100314.

Kebonye, N. M. (2021). “Exploring the novel support points-based split method on a soil
dataset”. In: Measurement 186, p. 110131. doi: 10.1016/j.measurement.2021.110131.

Krstinic, D. et al. (2020). “Multi-label classifier performance evaluation with confusion matrix”. In:
SAIM, SIPM, ACSIT, FCST, ICITE - 2020. CS IT - CSCP 2020, pp. 01–14. doi: 10.
5121/csit.2020.100801.

Kumar, G. and P.K. Bhatia (2014). “A Detailed Review of Feature Extraction in Image
Processing Systems”. In: 2014 Fourth International Conference on Advanced Computing &
Communication Technologies, pp. 5–12. doi: 10.1109/ACCT.2014.74.

Kumar, R.L., J. Kakarla, B.V. Isunuri, et al. (2021). “Multi-class brain tumor classification using
residual network and global average pooling”. In: Multimed Tools Appl 80, pp. 13429–13438.
doi: 10.1007/s11042-020-10335-4.

LeCun, Y., Y. Bengio, and G. Hinton (2015). “Deep learning”. In: Nature 521, pp. 436–444. doi:
10.1038/nature14539.

Lepri, B., N. Oliver, and A. Pentland (2021). “Ethical machines: The human-centric use of
artificial intelligence”. In: iScience 24.3, p. 102249. doi: 10.1016/j.isci.2021.102249.

Li, J. M., J. M. Bioucas-Dias, and A. Plaza (2013). “Semisupervised Hyperspectral Image
Classification Using Soft Sparse Multinomial Logistic Regression”. In: IEEE Geoscience and
Remote Sensing Letters 10.2, pp. 318–322. doi: 10.1109/LGRS.2012.2205216.

Liang, Y. et al. (2023). TaskMatrix.AI: Completing Tasks by Connecting Foundation Models with
Millions of APIs. arXiv: 2303.16434 [cs.AI]. url: https://arxiv.org/abs/2303.16434.

Liberty, E., K., Lang, and K. Shmakov (2016). “Stratified Sampling Meets Machine Learning”. In:
Proceedings of The 33rd International Conference on Machine Learning, pp. 2320–2329. url:
https://proceedings.mlr.press/v48/liberty16.html.

62



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Lin, Y. et al. (2011). “Large-scale image classification: Fast feature extraction and SVM training”.

Lins, S., K.D. Pandl, H. Teigeler, et al. (2021). “Artificial Intelligence as a Service”. In: Bus Inf
Syst Eng 63, pp. 441–456. doi: 10.1007/s12599-021-00708-w. url: https://doi.org/10.
1007/s12599-021-00708-w.

López García, A. (2019). “DEEPaaS API: a REST API for Machine Learning and Deep Learning
models”. In: Journal of Open Source Software 4.41, p. 1517. doi: 10.21105/joss.01517.

Loussaief, S. and A. Abdelkrim (2016). “Machine learning framework for image classification”.
In: 2016 7th International Conference on Sciences of Electronics, Technologies of Information
and Telecommunications (SETIT), pp. 58–61. doi: 10.1109/SETIT.2016.7939841.

Manis, K.T. and S. Madhavaram (2023). “AI-Enabled marketing capabilities and the hierarchy of
capabilities: Conceptualization, proposition development, and research avenues”. In: Journal of
Business Research 157, p. 113485. doi: 10.1016/j.jbusres.2022.113485.

Menard, S. (2002). Applied Logistic Regression Analysis. SAGE Publications, Inc. url: https:
//doi.org/10.4135/9781412983433.

Moazamnia, M. et al. (2019). “Formulating a strategy to combine artificial intelligence models
using Bayesian model averaging to study a distressed aquifer with sparse data availability”. In:
Journal of Hydrology 571, pp. 765–781. issn: 0022-1694. doi: 10.1016/j.jhydrol.2019.02. 011.

Moerland, T. M. et al. (2023). “Model-based Reinforcement Learning: A Survey”. In: Foundations
and Trends® in Machine Learning 16.1, pp. 1–118. doi: 10.1561/2200000086.

Moradmand, H., S. M. R. Aghamiri, and R. Ghaderi (2019). “Impact of image preprocessing
methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in
glioblastoma”. In: Medical Physics 46.3, pp. 1243–1253. doi: 10.1002/acm2.12795.

Murtaza, G., L. Shuib, A.W. Abdul Wahab, et al. (2020). “Deep learning-based breast cancer
classification through medical imaging modalities: state of the art and research challenges”. In:
Artif Intell Rev 53, pp. 1655–1720. doi: 10.1007/s10462-019-09716-5.

Nanni, L. et al. (2019). “Bioimage Classification with Handcrafted and Learned Features”. In:
IEEE/ACM Transactions on Computational Biology and Bioinformatics 16.3, pp. 874–885. doi:
10.1109/TCBB.2018.2821127.

Nasr-Esfahani, E. et al. (2019). “Dense pooling layers in fully convolutional network for skin
lesion segmentation”. In: Computerized Medical Imaging and Graphics 78. issn: 0895-6111. doi:
10.1016/j.compmedimag.2019.101658.

Nasteski, V. (2017). “An overview of the supervised machine learning methods”. In: Horizons 4,
pp. 51–62. doi: 10.20544/HORIZONS.B.04.1.17.P05.

63



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Ning, X. et al. (2022). “A new generation of ResNet model based on artificial intelligence and
few data driven and its construction in image recognition model”. In: Computational Intelligence
and Neuroscience 2022, p. 5976155. doi: 10.1155/2022/5976155.

Paymode, A. S. and V. B. Malode (2022). “Transfer learning for multi-crop leaf disease image
classification using convolutional neural network VGG”. In: Artificial Intelligence in Agriculture 6,
pp. 23–33. doi: 10.1016/j.aiia.2021.12.002.

Perez, L. and J. Wang (2017). The Effectiveness of Data Augmentation in Image Classification
using Deep Learning. arXiv: 1712.04621 [cs.LG]. url: https://arxiv.org/abs/1712. 04621.

Pham, H. V. et al. (2020). “Problems and opportunities in training deep learning software
systems: an analysis of variance”. In: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE ’20), pp. 771–783. doi:
10.1145/3324884.3416545.

Popescu, M. C. and L. M. Sasu (2014). “Feature extraction, feature selection and machine
learning for image classification: A case study”. In: 2014 International Conference on
Optimization of Electrical and Electronic Equipment (OPTIM), pp. 968–973. doi:
10.1109/OPTIM.2014. 6850925.

Rapport, D.J., R. Costanza, and A.J. McMichael (1998). “Assessing ecosystem health”. In:
Trends in Ecology Evolution 13.10, pp. 397–402. issn: 0169-5347. doi: 10 . 1016 / S0169 -
5347(98 ) 01449-9.

Ray, S. (2019). “A Quick Review of Machine Learning Algorithms”. In: 2019 International
Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp.
35–39. doi: 10.1109/COMITCon.2019.8862451.

Sagi, O. and L. Rokach (2018). “Ensemble learning: A survey”. In: Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8.4. doi: 10.1002/widm.1249.

Saha, S. et al. (2021). “Hierarchical Deep Learning Neural Network (HiDeNN): An artificial
intelligence (AI) framework for computational science and engineering”. In: Computer Methods
in Applied Mechanics and Engineering 373, p. 113452. issn: 0045-7825. doi: 10.1016/j.cma.
2020.113452.

Sala, O. E. et al. (2000). “Global Biodiversity Scenarios for the Year 2100”. In: Science
287.5459, pp. 1770–1774. doi: 10.1126/science.287.5459.1770. url: https://www.science.org/
doi/10.1126/science.287.5459.1770.

SDGs (2023). https://sdgs.un.org/goals.

Seventekidis, P. and D. Giagopoulos (2021). “A combined finite element and hierarchical Deep
learning approach for structural health monitoring: Test on a pin-joint composite truss structure”.

64



D4.3 AMOVALIH code and documentation
ANERIS #101094924

In: Mechanical Systems and Signal Processing 157, p. 107735. issn: 0888-3270. doi:
10.1016/j.ymssp.2021.107735.

Shekar, G., S. Revathy, and E. K. Goud (2020). “Malaria Detection using Deep Learning”. In:
2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), pp.
746–750. doi: 10.1109/ICOEI48184.2020.9143023.

Smuha, Nathalie A. (2019). “The EU Approach to Ethics Guidelines for Trustworthy Artificial
Intelligence”. In: Computer Law Review International 20.4, pp. 97–106. doi: 10.9785/cri-
2019-200402.

Solari, F. et al. (2021). “Accurate Multilevel Classification for Wildlife Images”. In: Computational
Intelligence and Neuroscience 2021, p. 6690590. issn: 1687-5265. doi: 10.1155/2021/6690590.

Song, J. et al. (2019). “Multi-layer boosting sparse convolutional model for generalized nuclear
segmentation from histopathology images”. In: Knowledge-Based Systems 176, pp. 40–53.
issn: 0950-7051. doi: 10.1016/j.knosys.2019.03.031.

Stefenon, S.F., KC. Yow, A. Nied, et al. (2022). “Classification of distribution power grid
structures using inception v3 deep neural network”. In: Electrical Engineering 104, pp.
4557–4569. doi: 10.1007/s00202-022-01641-1.

Sun, J. et al. (2020). “New Interpretations of Normalization Methods in Deep Learning”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 4. doi:
10.1609/aaai.v34i04.6046.

Talathi, S. S. and A. Vartak (2016). “Improving performance of recurrent neural network with
ReLU nonlinearity”. In: arXiv preprint arXiv:1511.03771v3 [cs.NE]. url:
https://arxiv.org/abs/1511.03771.

Tan, Mingxing and Quoc V. Le (2019). “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks”. In: CoRR abs/1905.11946. arXiv: 1905.11946. url:
http://arxiv.org/abs/1905.11946.

Thomaz, C. E. and G. A. Giraldi (2010). “A new ranking method for principal components
analysis and its application to face image analysis”. In: Image and Vision Computing 28.6, pp.
902–913. doi: 10.1016/j.imavis.2009.11.005.

Tilman, D. (2000). “Causes, consequences and ethics of biodiversity”. In: Nature 405, pp.
208–211. doi: 10.1038/35012217. url: https://doi.org/10.1038/35012217.

Trier, Ø. D., A. K. Jain, and T. Taxt (1996). “Feature extraction methods for character recognition
- A survey”. In: Pattern Recognition 29.4, pp. 641–662. issn: 0031-3203. doi:
10.1016/0031-3203(95)00118-2.

65



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Vijayan, V. and E. Sherly (2019). “A deep neural architecture for driver drowsiness detection
using facial features”. In: Journal of Intelligent Fuzzy Systems 36.3, pp. 1977–1985.
doi:10.3233/JIFS-169909.

Wang, P., E. Fan, and P. Wang (2021). “Comparative analysis of image classification algorithms
based on traditional machine learning and deep learning”. In: Pattern Recognition Letters 141,
pp. 61–67. issn: 0167-8655. doi: 10.1016/j.patrec.2020.07.042.

Wang, Z. and R. S. Srinivasan (2017). “A review of artificial intelligence-based building energy
use prediction: Contrasting the capabilities of single and ensemble prediction models”. In:
Renewable and Sustainable Energy Reviews 75, pp. 796–808. issn: 1364-0321. doi:
10.1016/j.rser.2016.10.079.

Wu, D. et al. (2021). “Edge-Cloud Collaboration Enabled Video Service Enhancement: A Hybrid
Human-Artificial Intelligence Scheme”. In: IEEE Transactions on Multimedia 23, pp. 2208–2221.
doi: 10.1109/TMM.2021.3066050.

Wu, Y. et al. (2022). “A deep learning fusion model with evidence-based confidence level
analysis for differentiation of malignant and benign breast tumors using dynamic contrast
enhanced MRI”. In: Biomedical Signal Processing and Control 72.Part B, p. 103319. doi:
10.1016/j. bspc.2021.103319.

Xiao, Y. et al. (2018). “A deep learning-based multi-model ensemble method for cancer
prediction”. In: Computer Methods and Programs in Biomedicine 153, pp. 1–9. doi:
10.1016/j.cmpb.2017. 09.005.

Xu, M. et al. (2023). “A Comprehensive Survey of Image Augmentation Techniques for Deep
Learning”. In: Pattern Recognition 137, p. 109347. issn: 0031-3203. doi: 10.1016/j.patcog.
2023.109347.

Yadav, A. et al. (2023). “Hybrid Artificial Intelligence-Based Models for Prediction of Death Rate
in India Due to COVID-19 Transmission”. In: International Journal of Reliable and Quality
E-Healthcare (IJRQEH) 12.2, p. 15. doi: 10.4018/IJRQEH.320480.

Yan, K. and D. Zhang (2015). “Feature selection and analysis on correlated gas sensor data
with recursive feature elimination”. In: Sensors and Actuators B: Chemical 212, pp. 353–363.
doi: 10.1016/j.snb.2015.02.025.

Yang, C.-C. et al. (2003). “Application of decision tree technology for image classification using
remote sensing data”. In: Agricultural Systems 76.3, pp. 1101–1117. doi: 10.1016/S0308-
521X(02)00051-3.

Ye, Z. et al. (2020). “Tackling environmental challenges in pollution controls using artificial
intelligence: A review”. In: Science of The Total Environment 699, p. 134279. issn: 0048-9697.
doi: 10.1016/j.scitotenv.2019.134279.

66



D4.3 AMOVALIH code and documentation
ANERIS #101094924

Ying, Xue (2019). “An Overview of Overfitting and its Solutions”. In: Journal of Physics:
Conference Series 1168.2, p. 022022. doi: 10.1088/1742-6596/1168/2/022022.

Zhu, J. et al. (2020). “Deep transfer learning artificial intelligence accurately stages COVID-19
lung disease severity on portable chest radiographs”. In: PLOS ONE. doi: 10.1371/journal.
pone.0236621.

Zhu, L., H. Jin, R. Zheng, et al. (2014). “Effective naive Bayes nearest neighbor based image
classification on GPU”. In: Journal of Supercomputing 68, pp. 820–848. doi: 10.1007/s11227-
013-1068-7.

Zhu, Q. et al. (2020). “Improving Classification Performance of Softmax Loss Function Based on
Scalable Batch-Normalization”. In: Applied Sciences 10.8, p. 2950. doi: 10.3390/app10082950.

67


