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Executive Summary
Underwater imaging presents unique challenges due to how water affects light, and 
consequently, the colors captured in an image. When light travels through water, different 
wavelengths are attenuated at different distances, leading to color distortions and reduced 
contrast. In most cases (though not all), red light is attenuated quickly, while blue and green light 
penetrate further, causing underwater images to often appear bluish-green with poor contrast. 
The ATIRES (Automatic underwaTer Image REstoration System) image enhancement algorithm 
addresses these issues through two simple but powerful techniques: red color correction and 
contrast stretching.

This document integrates usage instructions, technical implementation, and optimization details 
to provide a comprehensive overview of the underwater image enhancement system. The code 
is available on a public GitHub repository: https://github.com/VISEAON-Lab/aneris_enhance.

The ATIRES algorithm for image enhancement is planned to be applied on the imagery 
collected from undersea observatories in real-time. Currently, we have acquired imagery from 
the OBSEA cabled observatory. The OBSEA is an underwater cabled observatory located 4 km 
off the coast of Vilanova i la Geltrú, Spain, at 20 meters depth. The observatory is equipped with 
cameras, built by the EMUAS system partners. Future plans include using imagery from the 
Smart Bay observatory as well. Enhanced imagery will be the input for AIES-MAC partners, 
whose main task is species segmentation from images and AI services for recognition, counting, 
etc. 

At the time of this writing, preliminary tests of the ATIRES code have been conducted on several 
videos provided by the EMUAS partners from the OBSEA observatory, and on citizen science 
images obtained from the citizen science observatory MINKA (https://minka-sdg.org/). 
Immediate next steps are to speed up the processing of the algorithms, and to fine-tune 
algorithm parameters to optimally benefit AIES-MAC algorithms. Depending on the performance 
of the algorithms presented here on the results obtained by downstream users such as the 
AIES-MAC team, these algorithms will continue to be developed and improved. 

Following implementation and optimization details, we provide examples on datasets analyzed 
thus far in an off-line fashion. The algorithms already work near real-time; work is ongoing to 
make them real-time.
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List of Abbreviations

AIES-MAC – Automatic Information Extraction System for MACro-organisms

ATIRES – Automatic underwaTer Image REstoration System

AWIMAR — Adaptive Web Interfaces for MARine life reporting, sharing and consulting

EMUAS – Expandable Multi-imaging Underwater Acquisition System

FPS – Frames Per Second

LUT - Look Up Table 

OMB — Operational Marine Biology
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1. Background and Introduction
Reconstruction of colors in underwater images is a challenging task. In fact, until recently, our 
understanding of the physics of how light propagates in the water column, hits the sensor of a 
camera and forms an image was not accurate [1], [2]. Once a more physically accurate model 
was developed, it became possible to reconstruct colors in underwater images in an objective 
and repeatable manner [3]. These advances were made by the UH partners prior to their joining 
of the ANERIS consortium.

The main goal of the ANERIS consortium is to build a network that will enable operational 
marine biology (OMB) products. Among the main goals of the consortium are the acquisition 
(EMUAS partners) and enhancement of underwater imagery (ATIRES partners, this document) 
for the purposes of species identification and monitoring (AIES-MAC partners) (Fig. 1). 
Additionally, the ATIRES technologies are being applied to citizen scientist images obtained 
from the MINKA citizen science observatory (https://minka-sdg.org/).

Figure 1 Overview of the image acquisition, enhancement, and interpretation tasks carried out by ANERIS partners. 
Image modified from [4].

The use cases of the imagery collected within the ANERIS project make the already-difficult 
task of color construction even more difficult, because the imagery comes from 1) underwater 
video, and 2) citizen scientists (with a wide range of underwater cameras and participants). The 
difficulty arises from the following: we currently only understand how to reverse color loss based 
on the laws of physics. For those laws to be applicable, imagery must be acquired in a way that 
the pixel intensities remain linearly related to the light in the scene. This is almost always true for 
RAW images, which are the sensor-level images captured by a given camera. However, while 
physically accurate and valuable, RAW images do not look visually pleasing to the human eye. 
Thus, many camera manufacturers have built-in algorithms that add non-linearities to the 
images and videos. These non-linearities increase brightness and contrast, and make the colors 
pop—at the expense of irreversibly biasing the colors. RAW images also require additional 
processing, which the non-specialist user cannot readily do. As camera manufacturers cannot 
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afford to sell cameras which only take RAW images or video (because for the majority of 
consumers this imagery will look unpleasant), their standard outputs are enhanced, and 
therefore, non-linear.

An additional limitation that makes the job of the ATIRES algorithms difficult is the lack of 
information on scene depth. Scene depth is simply the distance between the camera and the 
scene being imaged. This information is critical to do color reconstruction, because colors fade 
as an exponential function of distance [1]

Over time, UH partners have developed several color reconstruction algorithms that work very 
well on linear imagery. These include Sea-thru [3], Sea-thru NERF [5], and OSMOSIS [6]. Yet, 
because these methods require linear images, they are not readily applicable to imagery that is 
being produced by ANERIS partners. However, there are many lessons learned from their 
development that helped us converge to the simple but powerful algorithms presented in this 
document.

For non-linear imagery, there is no standard way to reconstruct colors in a consistent manner, 
because the color distortions can come from several sources, including, but not limited to, 
camera sensor, in-camera algorithms, ambient light, and user settings at the time of image 
capture. Thus, learning-based algorithms are most suitable for color correction in such user 
cases. But they require training on very large datasets and even if successfully trained, may not 
be fast to apply. In this project, we have a requirement to provide enhancements as close to 
real-time as possible.

Thus, given the nature of the imagery collected by ANERIS partners, we have converged on 
using two simple but powerful algorithms on all data streams. These are two algorithms 
presented in this deliverable, Red Color Reconstruction and Contrast Stretching. The document 
also details the regular and optimized implementation of these algorithms. While these two 
algorithms will not yield the best possible color reconstruction (as that is not possible without 
linear imagery and distance information), they will provide sufficient enhancement of contrast 
and visibility, across all possible ocean states, to be able to identify species of interest with 
confidence.

Below, we describe these two algorithms. Next steps are to fine-tune the parameters of these 
algorithms to provide optimal input to the AIES-MAC partners’ algorithms.

2. Red Color Reconstruction

1.1. Overview

Red color correction compensates for the rapid absorption of long-wavelength light underwater 
by balancing the red channel relative to the green channel. In underwater images, though not in 
all geographic locations, the green channel of an image often serves as a stable reference due 
to its ability to penetrate deeper. The algorithm identifies discrepancies between the red and 
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green channels and proportionally restores red levels where they are deficient, ensuring natural 
color reconstruction.

It should be noted that the best (and most consistent) color reconstruction can be done on 
images that have a linear relationship to the light that was in the scene. Images collected by 
citizen scientists are almost always non-linear, and so are the majority of video streams due to 
the need to compress immediately. Thus, the color information that can be recovered is 
inherently limited by the nature of the data our algorithms need to work on. 

Red color correction compensates for the rapid absorption of red light underwater by:

1. Analyzing the average levels of red and green in the image.

2. Using the green channel as a reference to estimate how much red should be restored.

3. Adjusting red values proportionally based on the difference between the red and green 
means.

1.2. Implementation

The red correction algorithm works as follows:

1. Convert the Image to Floating-Point Format: This normalization step (scaling pixel 
values to the 0-1 range) ensures that arithmetic operations are accurate and consistent.

2. Calculate Mean Values: The algorithm computes the mean intensity for the red and green 
channels. This comparison determines how much correction the red channel needs.

3. Apply Proportional Adjustment: The red channel is adjusted proportionally based on its 
difference from the green channel, ensuring smooth and natural enhancement without 
oversaturation.

4. Scale Back to 0-255 Range: Once the adjustment is complete, the pixel values are 
rescaled to their original range for rendering.

Below, we provide two implementation versions for demonstration purposes, namely in Python 
and C++. Please refer to the GitHub repository for full code.

Python Implementation

# Function to correct red channel based on green channel 
# Input: BGR image 
# Output: Red-corrected BGR image 
def red_correction(img): 
    img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
    corrected_img = img_rgb.astype(np.float64)/255 

    mean_g = np.mean(corrected_img[:,:,1])  # Green channel mean 
    mean_r = np.mean(corrected_img[:,:,0])  # Red channel mean 

    # Adjust red channel values proportionally 
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    corrected_img[:,:,0] = corrected_img[:,:,0] + (mean_g - 
mean_r)*(1-corrected_img[:,:,0])*corrected_img[:,:,1] 

    # Clip values to 0-1 range and convert back to 8-bit 
    result = (255*corrected_img).astype(np.uint8) 
    return cv2.cvtColor(result, cv2.COLOR_RGB2BGR)

C++ Implementation

// Corrects red channel in an image based on green channel 
// Input: cv::Mat (image in BGR format) 
// Output: Processed image with red correction 
void redCorrection(cv::Mat& img) { 
    img.convertTo(img, CV_32FC3, 1.0 / 255.0); // Normalize to 0-1 range 

    std::vector<cv::Mat> channels(3); 
    cv::split(img, channels); 

    double mean_r = cv::mean(channels[2])[0]; // Red channel mean 
    double mean_g = cv::mean(channels[1])[0]; // Green channel mean 
    double diff = mean_g - mean_r; 

    // Adjust red channel based on green channel 
    channels[2] += diff * (1.0 - channels[2]).mul(channels[1]); 

    cv::merge(channels, img); 
    cv::threshold(img, img, 1.0, 1.0, cv::THRESH_TRUNC); // Cap values at 1.0 
    img.convertTo(img, CV_8UC3, 255.0); // Scale back to 0-255 range 
}

3. Contrast Stretching

3.1. Overview

Contrast stretching enhances the dynamic range of the image by redistributing pixel intensities. 
Underwater images often suffer from poor contrast, with most pixel values concentrated in a 
narrow intensity range. This algorithm identifies percentile-based thresholds (to exclude extreme 
outliers) and ensure they don’t affect the rest of the image, and stretches the pixel values within 
this range to utilize the full dynamic range, improving visibility and detail clarity.

Contrast stretching improves image visibility and image quality by:

1. Finding the darkest and brightest points in each color channel using 
percentile-based thresholds.

2. Stretching the color values between these points across the full available range.
3. Applying this enhancement while preserving the relative relationships between 

colors.
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The percentile-based approach (set at 98%) avoids extreme stretching caused by outlier pixels.

3.2. Implementation

For source code and contributions, please visit: GitHub Repository.

The contrast stretching algorithm performs the following steps:

1. Determine Thresholds: Using percentile calculations, the darkest and brightest pixels 
within the acceptable range are identified. This step excludes outlier values like extreme 
shadows or highlights.

2. Normalize Pixel Intensities: Pixel values are linearly scaled between the identified 
thresholds. This operation ensures that dark areas become darker, bright areas become 
brighter, and mid-tones are distributed evenly.

3. Clip and Rescale: After scaling, pixel values are clipped to the 0-1 range and then 
rescaled to their original range (0-255) for display.

Python Implementation

# Function to stretch contrast of an image 
# Input: BGR image, percentile threshold (default 98) 
# Output: Contrast-stretched BGR image 
def contrast_stretch(img, prcn=98): 
    high = np.percentile(img, prcn, axis=(0, 1), keepdims=True)  # High 
threshold 
    low = np.percentile(img, 100 - prcn, axis=(0, 1), keepdims=True)  # Low 
threshold 

    # Stretch pixel values between low and high thresholds 
    img_stretched = (img - low) / (high - low) 
    img_stretched = np.clip(img_stretched, 0, 1) * 255 
    return img_stretched.astype(np.uint8)

C++ Implementation

// Stretches contrast of an image 
// Input: cv::Mat (image), percentile threshold (default 98%) 
// Output: Contrast-stretched image 
void contrastStretch(cv::Mat& img, double percentile = 98.0) { 
    std::vector<cv::Mat> channels(3); 
    cv::split(img, channels); 

    for (int i = 0; i < 3; ++i) { 
        cv::Mat flat; 
        channels[i].reshape(1, 1).copyTo(flat); 

        // Calculate low and high percentile values 
        cv::sort(flat, flat, cv::SORT_ASCENDING); 
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        int total_pixels = flat.cols; 
        int low_idx = static_cast<int>((100.0 - percentile) / 100.0 * 
total_pixels); 
        int high_idx = static_cast<int>(percentile / 100.0 * total_pixels - 
1); 

        uchar low_val = flat.at<uchar>(low_idx); // Low threshold 
        uchar high_val = flat.at<uchar>(high_idx); // High threshold 

        // Stretch pixel values between low and high thresholds 
        channels[i].convertTo(channels[i], CV_32F); 
        channels[i] = (channels[i] - low_val) / (high_val - low_val) * 255.0; 
        channels[i].convertTo(channels[i], CV_8U); 
    } 

    cv::merge(channels, img); 
}
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3. Optimized Implementation for Real-time Performance

3.1. Overview

The optimized implementation introduces performance enhancements, such as precomputed 
Lookup Tables (LUTs) and batch processing, while maintaining the same general structure as 
the standard versions.

1. Dynamic LUT Updates: Precomputed LUTs adaptively adjust based on the current 
scene’s intensity distribution. This ensures efficient and real-time processing with 
minimal overhead.

2. Efficient Memory Management: The use of in-place operations reduces unnecessary 
data copying, enhancing performance for high-resolution images or real-time video.

3. Frame-by-Frame Processing: Consistent with other versions, it processes videos 
frame-by-frame but leverages LUTs to significantly improve frame rate.

3.2. Implementation 

These snippets collectively demonstrate the optimized approach: normalizing values with 
a float LUT, dynamically updating contrast LUTs, correcting red hues based on green 
intensity, and finally applying contrast stretching. All operations are designed to 
efficiently enhance underwater imagery frame-by-frame without altering the original 
code’s logic.

3.2.1. Lookup Table (LUT) Initialization

This snippet sets up a floating-point LUT to streamline normalization and prepares 
channel-specific LUTs for contrast stretching.

void initializeLUTs() { 
    // Initialize float conversion LUT to normalize [0-255] to [0-1] 
    float_lut = cv::Mat(1, 256, CV_32FC1); 
    float* lutData = float_lut.ptr<float>(); 
    for (int i = 0; i < 256; i++) { 
        lutData[i] = i / 255.0f; 
    } 

    // Initialize LUTs for contrast stretching (one per channel) 
    for(int i = 0; i < 3; i++) { 
        stretch_luts[i] = cv::Mat(1, 256, CV_8U); 
    } 
}
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3.2.2. Updating Contrast Stretching LUTs

This snippet calculates percentile-based thresholds, identifies appropriate low/high 
intensity bounds, and updates each channel’s LUT to improve contrast according to the 
current frame’s histogram.

void updateStretchLUTs(const cv::Mat& frame) { 
    const int kHistSize = 256; 
    int lowerBound = static_cast<int>((100.0 - percentile) * 0.01 * 
frame.rows * frame.cols); 

    std::vector<cv::Mat> channels; 
    cv::split(frame, channels); 

    for(int c = 0; c < 3; ++c) { 
        // Calculate histogram for current channel 
        int histogram[kHistSize] = {0}; 
        const uchar* data = channels[c].ptr<uchar>(); 
        const int totalPixels = channels[c].rows * channels[c].cols; 

        for(int i = 0; i < totalPixels; ++i) { 
            histogram[data[i]]++; 
        } 

        // Find low and high intensity values based on percentile 
        int count = 0, low = 0, high = 255; 
        for(int i = 0; i < kHistSize; ++i) { 
            count += histogram[i]; 
            if(count >= lowerBound) { 
                low = i; 
                break; 
            } 
        } 

        count = 0; 
        for(int i = kHistSize - 1; i >= 0; --i) { 
            count += histogram[i]; 
            if(count >= lowerBound) { 
                high = i; 
                break; 
            } 
        } 

        // Compute scaling for contrast stretching and update LUT 
        uchar* lutData = stretch_luts[c].ptr<uchar>(); 
        float scale = 255.0f / (high - low); 
        for(int i = 0; i < 256; ++i) { 
            lutData[i] = cv::saturate_cast<uchar>((i - low) * scale); 
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        } 
    } 
}

3.2.3. Red Channel Correction

Here, the red channel is adjusted based on the green channel’s intensity. Since green 
penetrates deeper underwater than red, it serves as a reference to restore balanced 
coloration.

cv::Mat redCorrection(const cv::Mat& img) { 
    std::vector<cv::Mat> channels; 
    cv::split(img, channels); 

    // Convert red and green channels to float range [0-1] 
    cv::Mat r_float, g_float; 
    cv::LUT(channels[2], float_lut, r_float);  // Red channel 
    cv::LUT(channels[1], float_lut, g_float);  // Green channel 

    // Calculate mean difference between green and red channels 
    cv::Scalar mean_r = cv::mean(r_float); 
    cv::Scalar mean_g = cv::mean(g_float); 
    float diff = mean_g[0] - mean_r[0]; 

    // Adjust red channel proportionally to green channel 
    cv::Mat correction = diff * (1.0f - r_float).mul(g_float); 
    r_float += correction; 

    // Convert corrected red channel back to 8-bit [0-255] 
    r_float *= 255.0f; 
    r_float.convertTo(channels[2], CV_8U); 

    cv::Mat result; 
    cv::merge(channels, img); 
    cv::merge(channels, result); 
    return result; 
}

3.2.4. Applying Contrast Stretching

This code applies the updated LUTs to enhance contrast, redistributing intensities for each 
channel. LUT updates occur at set intervals to adapt as conditions change over time, especially 
important for video processing.

cv::Mat contrastStretch(const cv::Mat& img) { 
    static int frame_count = 0; 
    // Periodically update LUTs based on update interval 
    if (frame_count++ % update_interval == 0) { 
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        updateStretchLUTs(img); 
    } 

    std::vector<cv::Mat> channels; 
    cv::split(img, channels); 

    // Apply per-channel LUTs to stretch contrast 
    for(int c = 0; c < 3; ++c) { 
        cv::LUT(channels[c], stretch_luts[c], channels[c]); 
    } 

    cv::Mat result; 
    cv::merge(channels, result); 
    return result; 
}

4. System Requirements and Benchmarks
Python requirements for our system are relatively simple and standard: Python 3.x, OpenCV 
(opencv-python), and NumPy. The C++ requirements are Opencv 4.x and a C++11 compiler.

We tested performance using a video resolution of 2548 × 1440 at 30 FPS. Tested on a system 
with CPU: Intel i7-11800H @ 4.6GHz (8 cores, 16 threads), RAM: 32GB DDR4 3200MHz and 
operating system: Ubuntu 22.04.4 LTS x86_64.

Results were as follows: Python implementation: 3.7 FPS, standard C++ implementation: 5.0 
FPS, and optimized C++ implementation: 20 FPS. In computer graphics and many areas of 
rendering, 20 FPS is considered real-time because it gives the user/viewer a fluent experience.

5. Project Structure
. 
├── python/ 
│   ├── underwater_enhance.py 
│   ├── image_processor.py 
├── cpp/ 
│   ├── underwater_enhance.cpp 
│   ├── underwater_enhance_opt.cpp 
├── README.md

6. Usage Examples

6.1. Python

Here is how our script can be called using Python, on images and video:
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python underwater_enhance.py input_image.jpg output_image.jpg 
python underwater_enhance.py input_video.mp4 output_video.mp4

6.2. C++

Here is how our script can be called using C++ for both standard and optimized versions, on 
images and video:

# Standard version 
g++ underwater_enhance.cpp -o underwater_enhance `pkg-config --cflags --libs opencv4` 
./underwater_enhance input_image.jpg output_image.jpg 

# Optimized version 
g++ underwater_enhance_opt.cpp -o underwater_enhance_opt `pkg-config --cflags --libs 
opencv4` 
./underwater_enhance_opt input_video.mp4 output_video.mp4

7. Example Results
Below are examples of imagery we have enhanced using the ATIRES algorithm offline (Figures 
2 and 3). We are working with the EMUAS group to be able to do the enhancement online, in 
real-time. Current processing speeds are near real-time, 20 FPS.
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Figure 2 Frames taken from videos acquired by the EMUAS group before (left) and after (right) ATIRES 
enhancement.
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Figure 3 Examples of images captured by citizen scientists, uploaded into the MINKA observatory,  enhanced by the 
ATIRES algorithm. Original images are on the left, and enhanced images are on the right. Note that these 
enhancements were made on non-linear images (which violate the laws of physics and therefore our best 
understanding of color distortions), and also without a depth map (which is key for proper color reconstruction).
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8. Summary and Outlook
This document summarizes the code and documentation for ATIRES, ANERIS deliverable 3.5. 
This deliverable is a computer vision algorithm for the enhancement of colors and contrast in 
underwater imagery. In the scope of the ANERIS project, imagery for which this code is 
relevant, will come from two sources: cabled underwater observatories, and images collected by 
citizen scientists. The final requirement for ATIRES is to run on real-time. At this moment, we 
have achieved 20 FPS with an optimized C++ implementation, which qualifies as real-time.

Future work for the development and integration of these algorithms with other ANERIS 
partners will prioritize the implementation of this code into the EMUAS image capture pipeline. 
In parallel, we will be working closely with the AIES-MAC partners to fine-tune the parameters of 
our algorithm to maximally benefit theirs. 

We expect that with access to more and diverse imagery being collected by partners, we will 
have a better understanding of the spectrum of the dominant color distortions, and will be able 
to develop even more customized solutions for their enhancement. 
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