
Operational Sensing Life Technologies for
Marine Ecosystems

Deliverable 3.5 – ATIRES

Code and Documentation

Lead Beneficiary: University of Haifa (UH)

Author/s: Nir Zagdanski, Derya Akkaynak

15/12/2024

Views and opinions expressed are those of the author(s) only and do not
necessarily reflect those of the European Union or the European Commission.

Neither the EU nor the EC can be held responsible for them.

D3.5 Deliverable Title
ANERIS #101094924

Prepared under contract from the European Commission

Grant agreement No. 101094924

EU Horizon Europe Research and Innovation action

Project acronym: ANERIS
Project full title: operAtional seNsing lifE technologies for maRIne ecosystemS
Start of the project: January 2023
Duration: 48 months
Project coordinator: Jaume Piera

Deliverable title: ATIRES code and documentation
Deliverable n°: D3.5
Nature of the deliverable: Report
Dissemination level: Public

WP responsible: WP3
Lead beneficiary: University of Haifa (UH)

Citation: Zagdanski, N., & Akkaynak, D., (2024). ATIRES Code and
Documentation. Deliverable D3.5 EU Horizon Europe
ANERIS Project, Grant agreement No. 101094924

Due date of deliverable: Month n°24
Actual submission date: Month n°24

Deliverable status:

Version Status Date Author(s)

1.0 Draft 13.12.2024 Nir Zagdanski, D. Akkaynak (UH)

1.1 1st Review 15.12.2024 Tali Treibitz (UH)

1.2 2nd Review 17.12.2024 Berta Companys (CSIC)

1.3 3rd Review 17.12.2024 Sebastian Luna-Valero (EGI)

1.4 4th Review 17.12.2024 Sara Montalbán (Quanta Labs)

2.0 Final 19.12.2024 Derya Akkaynak (UH)

2.0 Final Review 20.12.2024 Berta Companys (CSIC)

2

D3.5 Deliverable Title
ANERIS #101094924

The content of this deliverable does not necessarily reflect the official opinions of the European
Commission or other institutions of the European Union

Table of Contents
Executive Summary 4
List of Abbreviations 5
1. Background and Introduction 6
2. Red Color Reconstruction 7

1.1. Overview 7
1.2. Implementation 8

Python Implementation 8
C++ Implementation 9

3. Contrast Stretching 9
3.1. Overview 9
3.2. Implementation 10

Python Implementation 10
C++ Implementation 10

3. Optimized Implementation for Real-time Performance 12
3.1. Overview 12
3.2. Implementation 12

3.2.1. Lookup Table (LUT) Initialization 12
3.2.2. Updating Contrast Stretching LUTs 13
3.2.3. Red Channel Correction 14
3.2.4. Applying Contrast Stretching 14

4. System Requirements and Benchmarks 15
5. Project Structure 15
6. Usage Examples 15

6.1. Python 15
6.2. C++ 16

7. Example Results 16
8. Summary and Outlook 19
References 20

3

D3.5 Deliverable Title
ANERIS #101094924

Executive Summary
Underwater imaging presents unique challenges due to how water affects light, and
consequently, the colors captured in an image. When light travels through water, different
wavelengths are attenuated at different distances, leading to color distortions and reduced
contrast. In most cases (though not all), red light is attenuated quickly, while blue and green light
penetrate further, causing underwater images to often appear bluish-green with poor contrast.
The ATIRES (Automatic underwaTer Image REstoration System) image enhancement algorithm
addresses these issues through two simple but powerful techniques: red color correction and
contrast stretching.

This document integrates usage instructions, technical implementation, and optimization details
to provide a comprehensive overview of the underwater image enhancement system. The code
is available on a public GitHub repository: https://github.com/VISEAON-Lab/aneris_enhance.

The ATIRES algorithm for image enhancement is planned to be applied on the imagery
collected from undersea observatories in real-time. Currently, we have acquired imagery from
the OBSEA cabled observatory. The OBSEA is an underwater cabled observatory located 4 km
off the coast of Vilanova i la Geltrú, Spain, at 20 meters depth. The observatory is equipped with
cameras, built by the EMUAS system partners. Future plans include using imagery from the
Smart Bay observatory as well. Enhanced imagery will be the input for AIES-MAC partners,
whose main task is species segmentation from images and AI services for recognition, counting,
etc.

At the time of this writing, preliminary tests of the ATIRES code have been conducted on several
videos provided by the EMUAS partners from the OBSEA observatory, and on citizen science
images obtained from the citizen science observatory MINKA (https://minka-sdg.org/).
Immediate next steps are to speed up the processing of the algorithms, and to fine-tune
algorithm parameters to optimally benefit AIES-MAC algorithms. Depending on the performance
of the algorithms presented here on the results obtained by downstream users such as the
AIES-MAC team, these algorithms will continue to be developed and improved.

Following implementation and optimization details, we provide examples on datasets analyzed
thus far in an off-line fashion. The algorithms already work near real-time; work is ongoing to
make them real-time.

4

https://github.com/VISEAON-Lab/aneris_enhance
https://minka-sdg.org/

D3.5 Deliverable Title
ANERIS #101094924

List of Abbreviations

AIES-MAC – Automatic Information Extraction System for MACro-organisms

ATIRES – Automatic underwaTer Image REstoration System

AWIMAR — Adaptive Web Interfaces for MARine life reporting, sharing and consulting

EMUAS – Expandable Multi-imaging Underwater Acquisition System

FPS – Frames Per Second

LUT - Look Up Table

OMB — Operational Marine Biology

5

D3.5 Deliverable Title
ANERIS #101094924

1. Background and Introduction
Reconstruction of colors in underwater images is a challenging task. In fact, until recently, our
understanding of the physics of how light propagates in the water column, hits the sensor of a
camera and forms an image was not accurate [1], [2]. Once a more physically accurate model
was developed, it became possible to reconstruct colors in underwater images in an objective
and repeatable manner [3]. These advances were made by the UH partners prior to their joining
of the ANERIS consortium.

The main goal of the ANERIS consortium is to build a network that will enable operational
marine biology (OMB) products. Among the main goals of the consortium are the acquisition
(EMUAS partners) and enhancement of underwater imagery (ATIRES partners, this document)
for the purposes of species identification and monitoring (AIES-MAC partners) (Fig. 1).
Additionally, the ATIRES technologies are being applied to citizen scientist images obtained
from the MINKA citizen science observatory (https://minka-sdg.org/).

Figure 1 Overview of the image acquisition, enhancement, and interpretation tasks carried out by ANERIS partners.
Image modified from [4].

The use cases of the imagery collected within the ANERIS project make the already-difficult
task of color construction even more difficult, because the imagery comes from 1) underwater
video, and 2) citizen scientists (with a wide range of underwater cameras and participants). The
difficulty arises from the following: we currently only understand how to reverse color loss based
on the laws of physics. For those laws to be applicable, imagery must be acquired in a way that
the pixel intensities remain linearly related to the light in the scene. This is almost always true for
RAW images, which are the sensor-level images captured by a given camera. However, while
physically accurate and valuable, RAW images do not look visually pleasing to the human eye.
Thus, many camera manufacturers have built-in algorithms that add non-linearities to the
images and videos. These non-linearities increase brightness and contrast, and make the colors
pop—at the expense of irreversibly biasing the colors. RAW images also require additional
processing, which the non-specialist user cannot readily do. As camera manufacturers cannot

6

https://minka-sdg.org/

D3.5 Deliverable Title
ANERIS #101094924

afford to sell cameras which only take RAW images or video (because for the majority of
consumers this imagery will look unpleasant), their standard outputs are enhanced, and
therefore, non-linear.

An additional limitation that makes the job of the ATIRES algorithms difficult is the lack of
information on scene depth. Scene depth is simply the distance between the camera and the
scene being imaged. This information is critical to do color reconstruction, because colors fade
as an exponential function of distance [1]

Over time, UH partners have developed several color reconstruction algorithms that work very
well on linear imagery. These include Sea-thru [3], Sea-thru NERF [5], and OSMOSIS [6]. Yet,
because these methods require linear images, they are not readily applicable to imagery that is
being produced by ANERIS partners. However, there are many lessons learned from their
development that helped us converge to the simple but powerful algorithms presented in this
document.

For non-linear imagery, there is no standard way to reconstruct colors in a consistent manner,
because the color distortions can come from several sources, including, but not limited to,
camera sensor, in-camera algorithms, ambient light, and user settings at the time of image
capture. Thus, learning-based algorithms are most suitable for color correction in such user
cases. But they require training on very large datasets and even if successfully trained, may not
be fast to apply. In this project, we have a requirement to provide enhancements as close to
real-time as possible.

Thus, given the nature of the imagery collected by ANERIS partners, we have converged on
using two simple but powerful algorithms on all data streams. These are two algorithms
presented in this deliverable, Red Color Reconstruction and Contrast Stretching. The document
also details the regular and optimized implementation of these algorithms. While these two
algorithms will not yield the best possible color reconstruction (as that is not possible without
linear imagery and distance information), they will provide sufficient enhancement of contrast
and visibility, across all possible ocean states, to be able to identify species of interest with
confidence.

Below, we describe these two algorithms. Next steps are to fine-tune the parameters of these
algorithms to provide optimal input to the AIES-MAC partners’ algorithms.

2. Red Color Reconstruction

1.1. Overview

Red color correction compensates for the rapid absorption of long-wavelength light underwater
by balancing the red channel relative to the green channel. In underwater images, though not in
all geographic locations, the green channel of an image often serves as a stable reference due
to its ability to penetrate deeper. The algorithm identifies discrepancies between the red and

7

D3.5 Deliverable Title
ANERIS #101094924

green channels and proportionally restores red levels where they are deficient, ensuring natural
color reconstruction.

It should be noted that the best (and most consistent) color reconstruction can be done on
images that have a linear relationship to the light that was in the scene. Images collected by
citizen scientists are almost always non-linear, and so are the majority of video streams due to
the need to compress immediately. Thus, the color information that can be recovered is
inherently limited by the nature of the data our algorithms need to work on.

Red color correction compensates for the rapid absorption of red light underwater by:

1. Analyzing the average levels of red and green in the image.

2. Using the green channel as a reference to estimate how much red should be restored.

3. Adjusting red values proportionally based on the difference between the red and green
means.

1.2. Implementation

The red correction algorithm works as follows:

1. Convert the Image to Floating-Point Format: This normalization step (scaling pixel
values to the 0-1 range) ensures that arithmetic operations are accurate and consistent.

2. Calculate Mean Values: The algorithm computes the mean intensity for the red and green
channels. This comparison determines how much correction the red channel needs.

3. Apply Proportional Adjustment: The red channel is adjusted proportionally based on its
difference from the green channel, ensuring smooth and natural enhancement without
oversaturation.

4. Scale Back to 0-255 Range: Once the adjustment is complete, the pixel values are
rescaled to their original range for rendering.

Below, we provide two implementation versions for demonstration purposes, namely in Python
and C++. Please refer to the GitHub repository for full code.

Python Implementation

Function to correct red channel based on green channel
Input: BGR image
Output: Red-corrected BGR image
def red_correction(img):
 img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
 corrected_img = img_rgb.astype(np.float64)/255

 mean_g = np.mean(corrected_img[:,:,1]) # Green channel mean
 mean_r = np.mean(corrected_img[:,:,0]) # Red channel mean

 # Adjust red channel values proportionally

8

D3.5 Deliverable Title
ANERIS #101094924

 corrected_img[:,:,0] = corrected_img[:,:,0] + (mean_g -
mean_r)*(1-corrected_img[:,:,0])*corrected_img[:,:,1]

 # Clip values to 0-1 range and convert back to 8-bit
 result = (255*corrected_img).astype(np.uint8)
 return cv2.cvtColor(result, cv2.COLOR_RGB2BGR)

C++ Implementation

// Corrects red channel in an image based on green channel
// Input: cv::Mat (image in BGR format)
// Output: Processed image with red correction
void redCorrection(cv::Mat& img) {
 img.convertTo(img, CV_32FC3, 1.0 / 255.0); // Normalize to 0-1 range

 std::vector<cv::Mat> channels(3);
 cv::split(img, channels);

 double mean_r = cv::mean(channels[2])[0]; // Red channel mean
 double mean_g = cv::mean(channels[1])[0]; // Green channel mean
 double diff = mean_g - mean_r;

 // Adjust red channel based on green channel
 channels[2] += diff * (1.0 - channels[2]).mul(channels[1]);

 cv::merge(channels, img);
 cv::threshold(img, img, 1.0, 1.0, cv::THRESH_TRUNC); // Cap values at 1.0
 img.convertTo(img, CV_8UC3, 255.0); // Scale back to 0-255 range
}

3. Contrast Stretching

3.1. Overview

Contrast stretching enhances the dynamic range of the image by redistributing pixel intensities.
Underwater images often suffer from poor contrast, with most pixel values concentrated in a
narrow intensity range. This algorithm identifies percentile-based thresholds (to exclude extreme
outliers) and ensure they don’t affect the rest of the image, and stretches the pixel values within
this range to utilize the full dynamic range, improving visibility and detail clarity.

Contrast stretching improves image visibility and image quality by:

1. Finding the darkest and brightest points in each color channel using
percentile-based thresholds.

2. Stretching the color values between these points across the full available range.
3. Applying this enhancement while preserving the relative relationships between

colors.

9

D3.5 Deliverable Title
ANERIS #101094924

The percentile-based approach (set at 98%) avoids extreme stretching caused by outlier pixels.

3.2. Implementation

For source code and contributions, please visit: GitHub Repository.

The contrast stretching algorithm performs the following steps:

1. Determine Thresholds: Using percentile calculations, the darkest and brightest pixels
within the acceptable range are identified. This step excludes outlier values like extreme
shadows or highlights.

2. Normalize Pixel Intensities: Pixel values are linearly scaled between the identified
thresholds. This operation ensures that dark areas become darker, bright areas become
brighter, and mid-tones are distributed evenly.

3. Clip and Rescale: After scaling, pixel values are clipped to the 0-1 range and then
rescaled to their original range (0-255) for display.

Python Implementation

Function to stretch contrast of an image
Input: BGR image, percentile threshold (default 98)
Output: Contrast-stretched BGR image
def contrast_stretch(img, prcn=98):
 high = np.percentile(img, prcn, axis=(0, 1), keepdims=True) # High
threshold
 low = np.percentile(img, 100 - prcn, axis=(0, 1), keepdims=True) # Low
threshold

 # Stretch pixel values between low and high thresholds
 img_stretched = (img - low) / (high - low)
 img_stretched = np.clip(img_stretched, 0, 1) * 255
 return img_stretched.astype(np.uint8)

C++ Implementation

// Stretches contrast of an image
// Input: cv::Mat (image), percentile threshold (default 98%)
// Output: Contrast-stretched image
void contrastStretch(cv::Mat& img, double percentile = 98.0) {
 std::vector<cv::Mat> channels(3);
 cv::split(img, channels);

 for (int i = 0; i < 3; ++i) {
 cv::Mat flat;
 channels[i].reshape(1, 1).copyTo(flat);

 // Calculate low and high percentile values
 cv::sort(flat, flat, cv::SORT_ASCENDING);

10

https://github.com/VISEAON-Lab/aneris_enhance

D3.5 Deliverable Title
ANERIS #101094924

 int total_pixels = flat.cols;
 int low_idx = static_cast<int>((100.0 - percentile) / 100.0 *
total_pixels);
 int high_idx = static_cast<int>(percentile / 100.0 * total_pixels -
1);

 uchar low_val = flat.at<uchar>(low_idx); // Low threshold
 uchar high_val = flat.at<uchar>(high_idx); // High threshold

 // Stretch pixel values between low and high thresholds
 channels[i].convertTo(channels[i], CV_32F);
 channels[i] = (channels[i] - low_val) / (high_val - low_val) * 255.0;
 channels[i].convertTo(channels[i], CV_8U);
 }

 cv::merge(channels, img);
}

11

D3.5 Deliverable Title
ANERIS #101094924

3. Optimized Implementation for Real-time Performance

3.1. Overview

The optimized implementation introduces performance enhancements, such as precomputed
Lookup Tables (LUTs) and batch processing, while maintaining the same general structure as
the standard versions.

1. Dynamic LUT Updates: Precomputed LUTs adaptively adjust based on the current
scene’s intensity distribution. This ensures efficient and real-time processing with
minimal overhead.

2. Efficient Memory Management: The use of in-place operations reduces unnecessary
data copying, enhancing performance for high-resolution images or real-time video.

3. Frame-by-Frame Processing: Consistent with other versions, it processes videos
frame-by-frame but leverages LUTs to significantly improve frame rate.

3.2. Implementation

These snippets collectively demonstrate the optimized approach: normalizing values with
a float LUT, dynamically updating contrast LUTs, correcting red hues based on green
intensity, and finally applying contrast stretching. All operations are designed to
efficiently enhance underwater imagery frame-by-frame without altering the original
code’s logic.

3.2.1. Lookup Table (LUT) Initialization

This snippet sets up a floating-point LUT to streamline normalization and prepares
channel-specific LUTs for contrast stretching.

void initializeLUTs() {
 // Initialize float conversion LUT to normalize [0-255] to [0-1]
 float_lut = cv::Mat(1, 256, CV_32FC1);
 float* lutData = float_lut.ptr<float>();
 for (int i = 0; i < 256; i++) {
 lutData[i] = i / 255.0f;
 }

 // Initialize LUTs for contrast stretching (one per channel)
 for(int i = 0; i < 3; i++) {
 stretch_luts[i] = cv::Mat(1, 256, CV_8U);
 }
}

12

D3.5 Deliverable Title
ANERIS #101094924

3.2.2. Updating Contrast Stretching LUTs

This snippet calculates percentile-based thresholds, identifies appropriate low/high
intensity bounds, and updates each channel’s LUT to improve contrast according to the
current frame’s histogram.

void updateStretchLUTs(const cv::Mat& frame) {
 const int kHistSize = 256;
 int lowerBound = static_cast<int>((100.0 - percentile) * 0.01 *
frame.rows * frame.cols);

 std::vector<cv::Mat> channels;
 cv::split(frame, channels);

 for(int c = 0; c < 3; ++c) {
 // Calculate histogram for current channel
 int histogram[kHistSize] = {0};
 const uchar* data = channels[c].ptr<uchar>();
 const int totalPixels = channels[c].rows * channels[c].cols;

 for(int i = 0; i < totalPixels; ++i) {
 histogram[data[i]]++;
 }

 // Find low and high intensity values based on percentile
 int count = 0, low = 0, high = 255;
 for(int i = 0; i < kHistSize; ++i) {
 count += histogram[i];
 if(count >= lowerBound) {
 low = i;
 break;
 }
 }

 count = 0;
 for(int i = kHistSize - 1; i >= 0; --i) {
 count += histogram[i];
 if(count >= lowerBound) {
 high = i;
 break;
 }
 }

 // Compute scaling for contrast stretching and update LUT
 uchar* lutData = stretch_luts[c].ptr<uchar>();
 float scale = 255.0f / (high - low);
 for(int i = 0; i < 256; ++i) {
 lutData[i] = cv::saturate_cast<uchar>((i - low) * scale);

13

D3.5 Deliverable Title
ANERIS #101094924

 }
 }
}

3.2.3. Red Channel Correction

Here, the red channel is adjusted based on the green channel’s intensity. Since green
penetrates deeper underwater than red, it serves as a reference to restore balanced
coloration.

cv::Mat redCorrection(const cv::Mat& img) {
 std::vector<cv::Mat> channels;
 cv::split(img, channels);

 // Convert red and green channels to float range [0-1]
 cv::Mat r_float, g_float;
 cv::LUT(channels[2], float_lut, r_float); // Red channel
 cv::LUT(channels[1], float_lut, g_float); // Green channel

 // Calculate mean difference between green and red channels
 cv::Scalar mean_r = cv::mean(r_float);
 cv::Scalar mean_g = cv::mean(g_float);
 float diff = mean_g[0] - mean_r[0];

 // Adjust red channel proportionally to green channel
 cv::Mat correction = diff * (1.0f - r_float).mul(g_float);
 r_float += correction;

 // Convert corrected red channel back to 8-bit [0-255]
 r_float *= 255.0f;
 r_float.convertTo(channels[2], CV_8U);

 cv::Mat result;
 cv::merge(channels, img);
 cv::merge(channels, result);
 return result;
}

3.2.4. Applying Contrast Stretching

This code applies the updated LUTs to enhance contrast, redistributing intensities for each
channel. LUT updates occur at set intervals to adapt as conditions change over time, especially
important for video processing.

cv::Mat contrastStretch(const cv::Mat& img) {
 static int frame_count = 0;
 // Periodically update LUTs based on update interval
 if (frame_count++ % update_interval == 0) {

14

D3.5 Deliverable Title
ANERIS #101094924

 updateStretchLUTs(img);
 }

 std::vector<cv::Mat> channels;
 cv::split(img, channels);

 // Apply per-channel LUTs to stretch contrast
 for(int c = 0; c < 3; ++c) {
 cv::LUT(channels[c], stretch_luts[c], channels[c]);
 }

 cv::Mat result;
 cv::merge(channels, result);
 return result;
}

4. System Requirements and Benchmarks
Python requirements for our system are relatively simple and standard: Python 3.x, OpenCV
(opencv-python), and NumPy. The C++ requirements are Opencv 4.x and a C++11 compiler.

We tested performance using a video resolution of 2548 × 1440 at 30 FPS. Tested on a system
with CPU: Intel i7-11800H @ 4.6GHz (8 cores, 16 threads), RAM: 32GB DDR4 3200MHz and
operating system: Ubuntu 22.04.4 LTS x86_64.

Results were as follows: Python implementation: 3.7 FPS, standard C++ implementation: 5.0
FPS, and optimized C++ implementation: 20 FPS. In computer graphics and many areas of
rendering, 20 FPS is considered real-time because it gives the user/viewer a fluent experience.

5. Project Structure
.
├── python/
│ ├── underwater_enhance.py
│ ├── image_processor.py
├── cpp/
│ ├── underwater_enhance.cpp
│ ├── underwater_enhance_opt.cpp
├── README.md

6. Usage Examples

6.1. Python

Here is how our script can be called using Python, on images and video:

15

D3.5 Deliverable Title
ANERIS #101094924

python underwater_enhance.py input_image.jpg output_image.jpg
python underwater_enhance.py input_video.mp4 output_video.mp4

6.2. C++

Here is how our script can be called using C++ for both standard and optimized versions, on
images and video:

Standard version
g++ underwater_enhance.cpp -o underwater_enhance `pkg-config --cflags --libs opencv4`
./underwater_enhance input_image.jpg output_image.jpg

Optimized version
g++ underwater_enhance_opt.cpp -o underwater_enhance_opt `pkg-config --cflags --libs
opencv4`
./underwater_enhance_opt input_video.mp4 output_video.mp4

7. Example Results
Below are examples of imagery we have enhanced using the ATIRES algorithm offline (Figures
2 and 3). We are working with the EMUAS group to be able to do the enhancement online, in
real-time. Current processing speeds are near real-time, 20 FPS.

16

D3.5 Deliverable Title
ANERIS #101094924

Figure 2 Frames taken from videos acquired by the EMUAS group before (left) and after (right) ATIRES
enhancement.

17

D3.5 Deliverable Title
ANERIS #101094924

Figure 3 Examples of images captured by citizen scientists, uploaded into the MINKA observatory, enhanced by the
ATIRES algorithm. Original images are on the left, and enhanced images are on the right. Note that these
enhancements were made on non-linear images (which violate the laws of physics and therefore our best
understanding of color distortions), and also without a depth map (which is key for proper color reconstruction).

18

D3.5 Deliverable Title
ANERIS #101094924

8. Summary and Outlook
This document summarizes the code and documentation for ATIRES, ANERIS deliverable 3.5.
This deliverable is a computer vision algorithm for the enhancement of colors and contrast in
underwater imagery. In the scope of the ANERIS project, imagery for which this code is
relevant, will come from two sources: cabled underwater observatories, and images collected by
citizen scientists. The final requirement for ATIRES is to run on real-time. At this moment, we
have achieved 20 FPS with an optimized C++ implementation, which qualifies as real-time.

Future work for the development and integration of these algorithms with other ANERIS
partners will prioritize the implementation of this code into the EMUAS image capture pipeline.
In parallel, we will be working closely with the AIES-MAC partners to fine-tune the parameters of
our algorithm to maximally benefit theirs.

We expect that with access to more and diverse imagery being collected by partners, we will
have a better understanding of the spectrum of the dominant color distortions, and will be able
to develop even more customized solutions for their enhancement.

19

D3.5 Deliverable Title
ANERIS #101094924

References
[1] D. Akkaynak and T. Treibitz, “A Revised Underwater Image Formation Model,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT:
IEEE, Jun. 2018, pp. 6723–6732. doi: 10.1109/CVPR.2018.00703.

[2] D. Akkaynak, T. Treibitz, T. Shlesinger, Y. Loya, R. Tamir, and D. Iluz, “What is the Space of
Attenuation Coefficients in Underwater Computer Vision?” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp.
568–577. doi: 10.1109/CVPR.2017.68.

[3] D. Akkaynak and T. Treibitz, “Sea-Thru: A Method for Removing Water From Underwater
Images,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA: IEEE, Jun. 2019, pp. 1682–1691. doi:
10.1109/CVPR.2019.00178.

[4] Alcocer, Alex et al., “Validated Bio opt imaging solution (EMUAS).” ANERIS Project, Grant
agreement No. 101094924, Dec. 12, 2024.

[5] D. Levy et al., “SeaThru-NeRF: Neural Radiance Fields in Scattering Media”.
[6] O. B. Nathan, D. Levy, T. Treibitz, and D. Rosenbaum, “Osmosis: RGBD Diffusion Prior
for Underwater Image Restoration,” in Computer Vision – ECCV 2024, A. Leonardis, E. Ricci, S.
Roth, O. Russakovsky, T. Sattler, and G. Varol, Eds., Cham: Springer Nature Switzerland, 2025,
pp. 302–319. doi: 10.1007/978-3-031-73033-7_17.

20

	Deliverable 3.5 – ATIRES
	Code and Documentation
	Executive Summary
	List of Abbreviations
	1.​Background and Introduction
	2.​Red Color Reconstruction
	1.1.​Overview
	1.2.​Implementation
	Python Implementation
	C++ Implementation

	3.​Contrast Stretching
	3.1.​Overview
	3.2.​Implementation
	Python Implementation
	C++ Implementation

	3.​Optimized Implementation for Real-time Performance
	3.1.​Overview
	3.2.​Implementation​
	3.2.1.​Lookup Table (LUT) Initialization
	3.2.2.​Updating Contrast Stretching LUTs
	3.2.3.​Red Channel Correction
	3.2.4.​Applying Contrast Stretching

	4.​System Requirements and Benchmarks
	5.​Project Structure
	6.​Usage Examples
	6.1.​Python
	6.2.​C++

	7.​Example Results
	8.​Summary and Outlook
	References

